
Support Vector Machines
vs Logistic Regression

Kevin Swersky

University of Toronto CSC2515 Tutorial

Part of this tutorial is borrowed from Mark Schmidt’s excellent note on
structural SVMs: http://www.di.ens.fr/~mschmidt/Documents/ssvm.pdf

Logistic regression

Logistic regression

•  Assign probability to each outcome

•  Train to maximize likelihood

•  Linear decision boundary (with y being 0 or 1)

P (y = 1|x) = σ(wTx+ b)

l(w) = −
∑N

n=1 σ(w
Txn + b)yn(1− σ(wTxn + b))(1−yn)

ŷ = I[wTx+ b ≥ 0]

Support vector machines

Source: Wikipedia

Support vector machines

•  Enforce a margin of separation (here,)

•  Train to find the maximum margin

•  Linear decision boundary

min
1

2
||w||2

s.t. (2yn � 1)(wT xn + b) � 1, �n = 1 . . . N

ŷ = I[wTx+ b ≥ 0]

(2yn − 1)wTxn ≥ 1, ∀n = 1 . . . N

y ∈ {0, 1}

Recap

•  Logistic regression focuses on maximizing the
probability of the data. The farther the data lies from
the separating hyperplane (on the correct side), the
happier LR is.

•  An SVM tries to find the separating hyperplane that
maximizes the distance of the closest points to the
margin (the support vectors). If a point is not a
support vector, it doesn’t really matter.

A different take

•  Remember, in this example

•  Another take on the LR decision function uses the
probabilities instead:

y ∈ {0, 1}

ŷ =

�
1 if P (y = 1|x) � P (y = 0|x)

0 otherwise

P (y = 1|x) � exp(wT x + b)

P (y = 0|x) � 1

A different take

•  What if we don’t care about getting the right
probability, we just want to make the right decision?

•  We can express this as a constraint on the likelihood
ratio,

•  For some arbitrary constant c>1.

P (y=1|x)
P (y=0|x) ≥ c

A different take

•  Taking the log of both sides,

•  and plugging in the definition of P,

•  c is arbitrary, so we pick it to satisfy

log (P (y = 1|x))− log (P (y = 0|x)) ≥ log(c)

wTx+ b ≥ 1

wT x + b � 0 � log(c)

=� (wT x + b) � log(c)

log(c) = 1

A different take

•  This gives a feasibility problem (specifically the perceptron
problem) which may not have a unique solution.

•  Instead, put a quadratic penalty on the weights to make the
solution unique:

•  This gives us an SVM!

•  We derived an SVM by asking LR to make the right decisions.

min
1

2
||w||2

s.t. (2yn � 1)(wT xn + b) � 1, �n = 1 . . . N

The likelihood ratio

•  The key to this derivation is the likelihood ratio,

•  We can think of a classifier as assigning some cost to r.

•  Different costs = different classifiers.

r =
P (y = 1|x)

P (y = 0|x)

=
exp(wT x + b)

1
= exp(wT x + b)

LR cost

•  Pick

•  This is the LR objective (for a positive example)!

cost(r) = log(1 +
1

r
)

= log(1 + exp(�(wT x + b)))

SVM with slack variables

•  If the data is not linearly separable, we can change
the program to:

•  Now if a point n is misclassified, we incur a
cost of , it’s distance to the margin.

min
1

2
||w||2 +

N�

n=1

�n

s.t. (2yn � 1)(wT xn + b) � 1 � �n, �n = 1 . . . N

�n � 0, �n = 1 . . . N

�n

SVM with slack variables cost

•  Pick cost(r) =max(0, 1 � log(r))

=max(0, 1 � (wT x + b))

LR cost vs SVM cost

•  Plotted in terms of r,

LR cost vs SVM cost

•  Plotted in terms of , wT x + b

Exploiting this connection

•  We can now use this connection to derive extensions
to each method.

•  These might seem obvious (maybe not) and that’s
usually a good thing.

•  The important point though is that they are
principled, rather than just hacks. We can trust that
they aren’t doing anything crazy.

Kernel trick for LR

•  Recall that in it’s dual form, we can represent an
SVM decision boundary as:

•  where is an ∞-dimensional basis expansion
of .

•  Plugging this into the LR cost:

x

log(1 + exp(�
N�

n=1

�nK(x, xn)))

wT �(x) + b =
N�

n=1

�nK(x, xn) = 0

�(x)

Multi-class SVMs

•  Recall for multi-class LR we have:

P (y = i|x) =
exp(wT

i x + bi)�
k exp(wT

k x + bk)

Multi-class SVMs

•  Suppose instead we just want the decision rule to
satisfy:

•  Taking logs as before, this gives:

P (y = i|x)

P (y = k|x)
� c � k �= i

wT
i x � wT

k x � 1 � k �= i

Multi-class SVMs

•  This produces the following quadratic program:

min
1

2
||w||2

s.t. (wT
yn

xn + byn) � (wT
k xn + bk) � 1, �n = 1 . . . N, �k �= yn

Take-home message

•  Logistic regression and support vector machines are
closely linked.

•  Both can be viewed as taking a probabilistic model
and minimizing some cost associated with
misclassification based on the likelihood ratio.

•  This lets us analyze these classifiers in a decision
theoretic framework.

•  It also allows us to extend them in principled ways.

Which one to use?

•  As always, depends on your problem.

•  LR gives calibrated probabilities that can be interpreted as
confidence in a decision.

•  LR gives us an unconstrained, smooth objective.

•  LR can be (straightforwardly) used within Bayesian models.

•  SVMs don’t penalize examples for which the correct decision is
made with sufficient confidence. This may be good for
generalization.

•  SVMs have a nice dual form, giving sparse solutions when
using the kernel trick (better scalability).

