Support Vector Machines
vs Logistic Regression

Kevin Swersky

University of Toronto CSC2515 Tutorial

Part of this tutorial 1s borrowed from Mark Schmidt’s excellent note on
structural SVMs: http://www.di.ens.fr/~mschmidt/Documents/ssvm.pdf

Logistic regression

Logistic regression

» Assign probability to each outcome
Py =1|z) = o(wl'z +b)
 Train to maximize likelihood
l(w) = -0 oWz, +b) (1 — o(wlz, + b)) 1-v)

e Linear decision boundary (with y being 0 or 1)

g =Iwlz+b>0]

Support vector machines

Source: Wikipedia

Support vector machines

» Enforce a margin of separation (here, ¥ € {0,1})

2y, — Dwlz, >1, Vn=1...N

* Train to find the maximum margin

1

min —||w||2

st. (2un— D(wlz, +b)>1, Vn=1...N

* Linear decision boundary
g =TIwlz+b>0]

Recap

* Logistic regression focuses on maximizing the
probability of the data. The farther the data lies from
the separating hyperplane (on the correct side), the
happier LR 1is.

 An SVM tries to find the separating hyperplane that
maximizes the distance of the closest points to the
margin (the support vectors). If a point 1s not a
support vector, it doesn’t really matter.

A different take

« Remember, in this example ¥ € {0,1}

 Another take on the LR decision function uses the
probabilities instead:

R 1 if P(y=1|x) > P(y =0|z)
Yy = :
0 otherwise

P(y = 1|z) o exp(w’ = + b)
Py =0|r) 1

A different take

What 1f we don’t care about getting the right
probability, we just want to make the right decision?

We can express this as a constraint on the likelithood
ratio,

P(y=1|z)
P(y=0lz) = €

For some arbitrary constant c>1.

A different take

« Taking the log of both sides,
log (P(y = 1|z)) — log (P(y = 0[x)) > log(c)
* and plugging in the definition of P,
wlz +b—0 > log(c)

— (w!z 4+ b) > log(c)

* c s arbitrary, so we pick it to satisfy log(c) = 1
wlz+b>1

A different take

This gives a feasibility problem (specifically the perceptron
problem) which may not have a unique solution.

Instead, put a quadratic penalty on the weights to make the
solution unique:

. 1 5
min 2||w||

st. 2y, — D(wlz, +b)>1, Vn=1...N
This gives us an SVM!

We derived an SVM by asking LR to make the right decisions.

The likelihood ratio

* The key to this derivation is the likelithood ratio,

_ Py =1z
P(y = 0lx)
:exp(wTa: +b)

1

—exp(w! = + b)
 We can think of a classifier as assigning some cost to r.

o Different costs = different classifiers.

LLR cost

1
* Pick cost(r) =log(1 + ;)

—=log(1 4 exp(—(wlz + b)))

* This 1s the LR objective (for a positive example)!

SVM with slack variables

» If the data 1s not linearly separable, we can change
the program to:

1 N
min |lw]? + &,
n=1

st. 2y, — D(w'z, +b)>1-§&,, ¥Yn=1...N
£n >0, Vn=1...N

* Now if a point n 1s misclassified, we incur a
cost of &x, it’s distance to the margin.

SVM with slack variables cost

* Pick cost(r) =max(0,1 — log(r))
—max(0,1 — (w'z + b))

LR cost vs SVM cost

e Plotted 1n terms of T,

6

5|

—— LR cost
— SVM cost

LR cost vs SVM cost

 Plotted in terms of w’x + b,

6

5

— LR cost
— SVM cost

Exploiting this connection

e We can now use this connection to derive extensions
to each method.

* These might seem obvious (maybe not) and that’s
usually a good thing.

* The important point though is that they are
principled, rather than just hacks. We can trust that
they aren’t doing anything crazy.

Kernel trick for LR

Recall that in it’s dual form, we can represent an
SVM decision boundary as:

+b—Zozn (x,z,) =0

where¢(x)is an oo-d1men51ona1 basis expansion
of x .

Plugging this into the LR cost:

log(1 + exp(— Zozn T, Ty))

Multi-class SVMs

 Recall for multi-class LR we have:

, exp(w,gfx—l—bi)
P p— p—
W) = exp(wl + by

Multi-class SVMs

* Suppose instead we just want the decision rule to
satisfy:

P(y = i|x)
P(y = k|z)

>cVk#1

» Taking logs as before, this gives:

wlie —wle>1Vk#q

1

Multi-class SVMs

* This produces the following quadratic program:

. 1 5
min 2||w||

s.t. (wyTnxn +b,) — (Wiz, +b;) >1, Vn=1...N, Yk # y,

Take-home message

Logistic regression and support vector machines are
closely linked.

Both can be viewed as taking a probabilistic model
and minimizing some cost associated with
misclassification based on the likelithood ratio.

This lets us analyze these classifiers in a decision
theoretic framework.

It also allows us to extend them 1n principled ways.

Which one to use?

As always, depends on your problem.

LR gives calibrated probabilities that can be interpreted as
confidence in a decision.

LR gives us an unconstrained, smooth objective.

LR can be (straightforwardly) used within Bayesian models.
SVMs don’t penalize examples for which the correct decision is
made with sufficient confidence. This may be good for

generalization.

SVMs have a nice dual form, giving sparse solutions when
using the kernel trick (better scalability).

