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Logistic regression 



Logistic regression 

•  Assign probability to each outcome 

•  Train to maximize likelihood 

•  Linear decision boundary (with y being 0 or 1) 

P (y = 1|x) = σ(wTx+ b)

l(w) = −
∑N

n=1 σ(w
Txn + b)yn(1− σ(wTxn + b))(1−yn)

ŷ = I[wTx+ b ≥ 0]



Support vector machines 

Source: Wikipedia 



Support vector machines 

•  Enforce a margin of  separation (here,                 ) 

•  Train to find the maximum margin 

•  Linear decision boundary 

min
1

2
||w||2

s.t. (2yn � 1)(wT xn + b) � 1, �n = 1 . . . N

ŷ = I[wTx+ b ≥ 0]

(2yn − 1)wTxn ≥ 1, ∀n = 1 . . . N

y ∈ {0, 1}



Recap 

•  Logistic regression focuses on maximizing the 
probability of  the data. The farther the data lies from 
the separating hyperplane (on the correct side), the 
happier LR is. 

•  An SVM tries to find the separating hyperplane that 
maximizes the distance of  the closest points to the 
margin (the support vectors). If  a point is not a 
support vector, it doesn’t really matter. 



A different take 

•  Remember, in this example 

•  Another take on the LR decision function uses the 
probabilities instead: 

y ∈ {0, 1}

ŷ =

�
1 if P (y = 1|x) � P (y = 0|x)

0 otherwise

P (y = 1|x) � exp(wT x + b)

P (y = 0|x) � 1



A different take 

•  What if  we don’t care about getting the right 
probability, we just want to make the right decision? 

•  We can express this as a constraint on the likelihood 
ratio, 

•  For some arbitrary constant c>1. 

P (y=1|x)
P (y=0|x) ≥ c



A different take 

•  Taking the log of  both sides, 

•  and plugging in the definition of  P, 

•  c is arbitrary, so we pick it to satisfy  

log (P (y = 1|x))− log (P (y = 0|x)) ≥ log(c)

wTx+ b ≥ 1

wT x + b � 0 � log(c)

=� (wT x + b) � log(c)

log(c) = 1



A different take 

•  This gives a feasibility problem (specifically the perceptron 
problem) which may not have a unique solution. 

•  Instead, put a quadratic penalty on the weights to make the 
solution unique: 

•  This gives us an SVM! 

•  We derived an SVM by asking LR to make the right decisions. 

min
1

2
||w||2

s.t. (2yn � 1)(wT xn + b) � 1, �n = 1 . . . N



The likelihood ratio 

•  The key to this derivation is the likelihood ratio, 

•  We can think of  a classifier as assigning some cost to r. 

•  Different costs = different classifiers. 

r =
P (y = 1|x)

P (y = 0|x)

=
exp(wT x + b)

1
= exp(wT x + b)



LR cost 

•  Pick 

•  This is the LR objective (for a positive example)! 

cost(r) = log(1 +
1

r
)

= log(1 + exp(�(wT x + b)))



SVM with slack variables 

•  If  the data is not linearly separable, we can change 
the program to: 

•  Now if  a point n is misclassified, we incur a 
cost of      , it’s distance to the margin. 

min
1

2
||w||2 +

N�

n=1

�n

s.t. (2yn � 1)(wT xn + b) � 1 � �n, �n = 1 . . . N

�n � 0, �n = 1 . . . N

�n



SVM with slack variables cost 

•  Pick  cost(r) =max(0, 1 � log(r))

=max(0, 1 � (wT x + b))



LR cost vs SVM cost 

•  Plotted in terms of  r,  



LR cost vs SVM cost 

•  Plotted in terms of                 ,  wT x + b



Exploiting this connection 

•  We can now use this connection to derive extensions 
to each method. 

•  These might seem obvious (maybe not) and that’s 
usually a good thing. 

•  The important point though is that they are 
principled, rather than just hacks. We can trust that 
they aren’t doing anything crazy.  



Kernel trick for LR 

•  Recall that in it’s dual form, we can represent an 
SVM decision boundary as: 

 

•  where        is an ∞-dimensional basis expansion 
of     . 

•  Plugging this into the LR cost: 

x

log(1 + exp(�
N�

n=1

�nK(x, xn)))

wT �(x) + b =
N�

n=1

�nK(x, xn) = 0

�(x)



Multi-class SVMs 

•  Recall for multi-class LR we have: 

P (y = i|x) =
exp(wT

i x + bi)�
k exp(wT

k x + bk)



Multi-class SVMs 

•  Suppose instead we just want the decision rule to 
satisfy: 

•  Taking logs as before, this gives: 

P (y = i|x)

P (y = k|x)
� c � k �= i

wT
i x � wT

k x � 1 � k �= i



Multi-class SVMs 

•  This produces the following quadratic program: 

min
1

2
||w||2

s.t. (wT
yn

xn + byn) � (wT
k xn + bk) � 1, �n = 1 . . . N, �k �= yn



Take-home message 

•  Logistic regression and support vector machines are 
closely linked. 

•  Both can be viewed as taking a probabilistic model 
and minimizing some cost associated with 
misclassification based on the likelihood ratio. 

•  This lets us analyze these classifiers in a decision 
theoretic framework. 

•  It also allows us to extend them in principled ways. 



Which one to use? 

•  As always, depends on your problem. 

•  LR gives calibrated probabilities that can be interpreted as 
confidence in a decision. 

•  LR gives us an unconstrained, smooth objective. 

•  LR can be (straightforwardly) used within Bayesian models. 

•  SVMs don’t penalize examples for which the correct decision is 
made with sufficient confidence. This may be good for 
generalization. 

•  SVMs have a nice dual form, giving sparse solutions when 
using the kernel trick (better scalability). 


