
1

An Idiot’s guide to Support vector
machines (SVMs)

R. Berwick, Village Idiot

SVMs: A New
Generation of Learning Algorithms

• Pre 1980:
– Almost all learning methods learned linear decision surfaces.
– Linear learning methods have nice theoretical properties

• 1980’s
– Decision trees and NNs allowed efficient learning of non-

linear decision surfaces
– Little theoretical basis and all suffer from local minima

• 1990’s
– Efficient learning algorithms for non-linear functions based

on computational learning theory developed
– Nice theoretical properties.

2

Key Ideas

• Two independent developments within last decade
– New efficient separability of non-linear regions that use

“kernel functions” : generalization of ‘similarity’ to
new kinds of similarity measures based on dot products

– Use of quadratic optimization problem to avoid ‘local
minimum’ issues with neural nets

– The resulting learning algorithm is an optimization
algorithm rather than a greedy search

Organization

• Basic idea of support vector machines: just like 1-
layer or multi-layer neural nets
– Optimal hyperplane for linearly separable

patterns
– Extend to patterns that are not linearly

separable by transformations of original data to
map into new space – the Kernel function

• SVM algorithm for pattern recognition

3

Support Vectors

• Support vectors are the data points that lie closest
to the decision surface (or hyperplane)

• They are the data points most difficult to classify
• They have direct bearing on the optimum location

of the decision surface
• We can show that the optimal hyperplane stems

from the function class with the lowest
“capacity”= # of independent features/parameters
we can twiddle [note this is ‘extra’ material not
covered in the lectures… you don’t have to know
this]

Recall from 1-layer nets : Which Separating
Hyperplane?

• In general, lots of possible
solutions for a,b,c (an
infinite number!)

• Support Vector Machine
(SVM) finds an optimal
solution

4

Support Vector Machine (SVM)
Support vectors

Maximize
margin

• SVMs maximize the margin
(Winston terminology: the ‘street’)
around the separating hyperplane.

• The decision function is fully
specified by a (usually very small)
subset of training samples, the
support vectors.

• This becomes a Quadratic
programming problem that is easy
to solve by standard methods

Separation by Hyperplanes

• Assume linear separability for now (we will relax this
later)

• in 2 dimensions, can separate by a line
– in higher dimensions, need hyperplanes

5

General input/output for SVMs just like for
neural nets, but for one important addition…

Input: set of (input, output) training pair samples; call the
input sample features x1, x2…xn, and the output result y.
Typically, there can be lots of input features xi.

Output: set of weights w (or wi), one for each feature,
whose linear combination predicts the value of y. (So far,
just like neural nets…)
Important difference: we use the optimization of maximizing
the margin (‘street width’) to reduce the number of weights
that are nonzero to just a few that correspond to the
important features that ‘matter’ in deciding the separating
line(hyperplane)…these nonzero weights correspond to the
support vectors (because they ‘support’ the separating
hyperplane)

2-D Case

Find a,b,c, such that
ax + by ≥ c for red points
ax + by ≤ (or <) c for green
points.

6

Which Hyperplane to pick?

• Lots of possible solutions for a,b,c.
• Some methods find a separating

hyperplane, but not the optimal one (e.g.,
neural net)

• But: Which points should influence
optimality?
– All points?

• Linear regression
• Neural nets

– Or only “difficult points” close to
decision boundary

• Support vector machines

Support Vectors again for linearly separable case

• Support vectors are the elements of the training set that
would change the position of the dividing hyperplane if
removed.

• Support vectors are the critical elements of the training set
• The problem of finding the optimal hyper plane is an

optimization problem and can be solved by optimization
techniques (we use Lagrange multipliers to get this
problem into a form that can be solved analytically).

7

X

X

X X

X

X

Support Vectors: Input vectors that just touch the boundary of the
margin (street) – circled below, there are 3 of them (or, rather, the
‘tips’ of the vectors

w0
Tx + b0 = 1 or w0

Tx + b0 = –1

d

X

X

X X

X

X

Here, we have shown the actual support vectors, v1, v2, v3, instead of
just the 3 circled points at the tail ends of the support vectors. d
denotes 1/2 of the street ‘width’

d

v1

v2

v3

8

d+

d-

Definitions
Define the hyperplanes H such that:
w•xi+b ≥ +1 when yi =+1
w•xi+b ≤ -1 when yi = –1

d+ = the shortest distance to the closest positive point
d- = the shortest distance to the closest negative point
The margin (gutter) of a separating hyperplane is d+ + d–.

H

H1 and H2 are the planes:
H1: w•xi+b = +1
H2: w•xi+b = –1
The points on the planes H1 and
H2 are the tips of the Support
Vectors
The plane H0 is the median in
between, where w•xi+b =0

H1

H2

H0

Moving a support vector
moves the decision
boundary

Moving the other vectors
has no effect

The optimization algorithm to generate the weights proceeds in such a
way that only the support vectors determine the weights and thus the
boundary

9

Defining the separating Hyperplane

• Form of equation defining the decision surface separating
the classes is a hyperplane of the form:

wTx + b = 0
– w is a weight vector
– x is input vector
– b is bias

• Allows us to write
wTx + b ≥ 0 for di = +1
wTx + b < 0 for di = –1

Some final definitions

• Margin of Separation (d): the separation between the
hyperplane and the closest data point for a given weight
vector w and bias b.

• Optimal Hyperplane (maximal margin): the particular
hyperplane for which the margin of separation d is
maximized.

10

Maximizing the margin (aka street width)

d+

d-

We want a classifier (linear separator)
 with as big a margin as possible.

Recall the distance from a point(x0,y0) to a line:
Ax+By+c = 0 is: |Ax0 +By0 +c|/sqrt(A2+B2), so,
The distance between H0 and H1 is then:
|w•x+b|/||w||=1/||w||, so

The total distance between H1 and H2 is thus: 2/||w||

In order to maximize the margin, we thus need to minimize ||w||. With the
condition that there are no datapoints between H1 and H2:
xi•w+b ≥ +1 when yi =+1
xi•w+b ≤ –1 when yi =–1 Can be combined into: yi(xi•w) ≥ 1

H1

H2

H0

We now must solve a quadratic
programming problem

• Problem is: minimize ||w||, s.t. discrimination boundary is
obeyed, i.e., min f(x) s.t. g(x)=0, which we can rewrite as:
 min f: ½ ||w||2 (Note this is a quadratic function)
s.t. g: yi(w•xi)–b = 1 or [yi(w•xi)–b] – 1 =0

This is a constrained optimization problem
It can be solved by the Lagrangian multipler method
Because it is quadratic, the surface is a paraboloid, with just a

single global minimum (thus avoiding a problem we had
with neural nets!)

11

Example: paraboloid 2+x2+2y2 s.t. x+y=1

flatten

Intuition: find intersection of two functions f, g at
a tangent point (intersection = both constraints
satisfied; tangent = derivative is 0); this will be a
min (or max) for f s.t. the contraint g is satisfied

Flattened paraboloid f: 2x2+2y2=0 with superimposed
constraint g: x +y = 1

Minimize when the constraint line g (shown in green)
is tangent to the inner ellipse contour linez of f (shown in red) –
note direction of gradient arrows.

12

flattened paraboloid f: 2+x2+2y2=0 with superimposed constraint
g: x +y = 1; at tangent solution p, gradient vectors of f,g are
parallel (no possible move to increment f that also keeps you in
region g)

Minimize when the constraint line g is tangent to the inner ellipse
contour line of f

Two constraints

1. Parallel normal constraint (= gradient constraint
on f, g s.t. solution is a max, or a min)

2. g(x)=0 (solution is on the constraint line as well)

We now recast these by combining f, g as the new
Lagrangian function by introducing new ‘slack
variables’ denoted a or (more usually, denoted α
in the literature)

13

Redescribing these conditions

• Want to look for solution point p where

• Or, combining these two as the Langrangian L &
requiring derivative of L be zero:

() ()

() 0

f p g p

g x

!" ="

=

L(x,a) = f (x) ! ag(x)

"(x,a) = 0

At a solution p

• The the constraint line g and the contour lines of f must
be tangent

• If they are tangent, their gradient vectors
(perpendiculars) are parallel

• Gradient of g must be 0 – i.e., steepest ascent & so
perpendicular to f

• Gradient of f must also be in the same direction as g

14

How Langrangian solves constrained
optimization

L(x,a) = f (x) ! ag(x) where

"(x,a) = 0

Partial derivatives wrt x recover the parallel normal
 constraint
Partial derivatives wrt λ recover the g(x,y)=0

In general,

L(x,a) = f (x) + a

ii! g
i
(x)

In general

L(x,a) = f (x) + a
ii! g

i
(x) a function of n + m variables

n for the x 's, m for the a. Differentiating gives n + m equations, each

 set to 0. The n eqns differentiated wrt each x
i
 give the gradient conditions;

the m eqns differentiated wrt each a
i
 recover the constraints g

i

Gradient min of f
constraint condition g

In our case, f(x): ½|| w||2 ; g(x): yi(w•xi +b)–1=0 so Lagrangian is:

min L= ½|| w||2 – Σai[yi(w•xi +b)–1] wrt w, b
We expand the last to get the following L form:

min L= ½|| w||2 – Σaiyi(w•xi +b) +Σai wrt w, b

15

Lagrangian Formulation
• So in the SVM problem the Lagrangian is

• From the property that the derivatives at min = 0
we get:

min L
P
= 1

2
w

2

! a
i

i=1

l

" y
i

x
i
#w + b() + a

i
i=1

l

"

s.t. $i, a
i
% 0 where l is the # of training points

w = a
i

i=1

l

! y
i
x

i
, a

i
i=1

l

! y
i
= 0

!LP

!w
= w " aiyixi = 0

i=1

l

#

!LP

!b
= aiyi = 0 so

i=1

l

"

What’s with this Lp business?

• This indicates that this is the primal form of the
optimization problem

• We will actually solve the optimization problem
by now solving for the dual of this original
problem

• What is this dual formulation?

16

The Lagrangian Dual Problem: instead of minimizing over w, b,
subject to constraints involving a’s, we can maximize over a (the
dual variable) subject to the relations obtained previously for w

and b

w = a
i

i=1

l

! y
i
x

i
, a

i
i=1

l

! y
i
= 0

Our solution must satisfy these two relations:

By substituting for w and b back in the original eqn we can get rid of the
dependence on w and b.

Note first that we already now have our answer for what the weights w
must be: they are a linear combination of the training inputs and the
training outputs, xi and yi and the values of a. We will now solve for the
a’s by differentiating the dual problem wrt a, and setting it to zero. Most
of the a’s will turn out to have the value zero. The non-zero a’s will
correspond to the support vectors

Primal problem:

min L
P
= 1

2
w

2

! a
i

i=1

l

" y
i

x
i
#w + b() + a

i
i=1

l

"

s.t. $i a
i
% 0

w = a
i

i=1

l

! y
i
x

i
, a

i
i=1

l

! y
i
= 0

Dual problem:

max L
D

(a
i
) = a

i
i=1

l

! "
1

2
a

i
a

j
i=1

l

! y
i
y

j
x

i
#x

j()

s.t. a
i
y

i
= 0

i=1

l

! & a
i
$ 0

(note that we have removed the dependence on w and b)

17

The Dual problem

• Kuhn-Tucker theorem: the solution we find here will
be the same as the solution to the original problem

• Q: But why are we doing this???? (why not just
solve the original problem????)

• Ans: Because this will let us solve the problem by
computing the just the inner products of xi, xj (which
will be very important later on when we want to
solve non-linearly separable classification problems)

The Dual Problem

Dual problem:

max L
D

(a
i
) = a

i
i=1

l

! "
1

2
a

i
a

j
i=1

l

! y
i
y

j
x

i
#x

j()

s.t. a
i
y

i
= 0

i=1

l

! & a
i
$ 0

Notice that all we have are the dot products of xi,xj

If we take the derivative wrt a and set it equal to zero,
we get the following solution, so we can solve for ai:

aiyi
i=1

l

! = 0

0 " ai " C

18

Now knowing the ai we can find the
weights w for the maximal margin

separating hyperplane:

w = a
i

i=1

l

! y
i
x

i

And now, after training and finding the w by this method,
given an unknown point u measured on features xi we
can classify it by looking at the sign of:

f (x) = wiu + b = (aiyixi iu) + b
i=1

l

!

Remember: most of the weights wi, i.e., the a’s, will be zero
Only the support vectors (on the gutters or margin) will have nonzero
weights or a’s – this reduces the dimensionality of the solution

Why should inner product kernels be involved in pattern
recognition using SVMs, or at all?

– Intuition is that inner products provide some measure of
‘similarity’

– Inner product in 2D between 2 vectors of unit length returns the
cosine of the angle between them = how ‘far apart’ they are

e.g. x = [1, 0]T , y = [0, 1]T

i.e. if they are parallel their inner product is 1 (completely similar)

 xT y = x•y = 1

If they are perpendicular (completely unlike) their inner product is
0 (so should not contribute to the correct classifier)

 xT• y = x•y = 0

Inner products, similarity, and SVMs

19

Insight into inner products

Consider that we are trying to maximize the form:

L
D

(a
i
) = a

i
i=1

l

! "
1

2
a

i
a

j
i=1

l

! y
i
y

j
x

i
#x

j()

s.t. a
i
y

i
= 0

i=1

l

! & a
i
$ 0

The claim is that this function will be maximized if we give nonzero values to a’s that
correspond to the support vectors, ie, those that ‘matter’ in fixing the maximum width
margin (‘street’). Well, consider what this looks like. Note first from the constraint
condition that all the a’s are positive. Now let’s think about a few cases.
Case 1. If two features xi , xj are completely dissimilar, their dot product is 0, and they don’t
contribute to L.
Case 2. If two features xi,xj are completely alike, their dot product is 0. There are 2 subcases.

Subcase 1: both xi,and xj predict the same output value yi (either +1 or –1). Then yi
x yj is always 1, and the value of aiajyiyjxixj will be positive. But this would decrease the
value of L (since it would subtract from the first term sum). So, the algorithm downgrades
similar feature vectors that make the same prediction.

Subcase 2: xi,and xj make opposite predictions about the output value yi (ie, one is
+1, the other –1), but are otherwise very closely similar: then the product aiajyiyjxix is
negative and we are subtracting it, so this adds to the sum, maximizing it. This is precisely
the examples we are looking for: the critical ones that tell the two classses apart.

Insight into inner products, graphically: 2 very
very similar xi, xj vectors that predict difft
classes tend to maximize the margin width

xi

xj

Yanpu Li

Yanpu Li

Yanpu Li

20

2 vectors that are similar but predict the
same class are redundant

xi

xj

2 dissimilar (orthogonal) vectors don’t
count at all

xi

xj

21

But…are we done???

Not Linearly Separable!

Find a line that penalizes
points on “the wrong side”

22

x
x

x

x
x

x x

ϕ (o)

X F

ϕ

ϕ (x)

ϕ (x)

ϕ (x)

ϕ (x)

ϕ (x)

ϕ (x)

ϕ (x)

ϕ (o)

ϕ (o)

ϕ (o)

ϕ (o)

ϕ (o)
ϕ (o)

o
o

o

o
o

o

Transformation to separate

Non–Linear SVMs

a b

()() ()2
x a x b x a b x ab! ! = ! + +

{ }2
,x x x!

• The idea is to gain linearly separation by mapping the data to
a higher dimensional space
– The following set can’t be separated by a linear function,

but can be separated by a quadratic one

– So if we map
we gain linear separation

23

Problems with linear SVM

=-1
=+1

What if the decision function is not linear? What transform would separate these?

Ans: polar coordinates!
Non-linear SVM

The Kernel trick

=-1
=+1

Imagine a function φ that maps the data into another space:
 φ=Radial→Η

=-1
=+1

Remember the function we want to optimize: Ld = ∑ai – ½∑ai ajyiyj (xi•xj) where (xi•xj) is the
dot product of the two feature vectors. If we now transform to φ, instead of computing this
dot product (xi•xj) we will have to compute (φ (xi)• φ (xj)). But how can we do this? This is
expensive and time consuming (suppose φ is a quartic polynomial… or worse, we don’t know the
function explicitly. Well, here is the neat thing:
If there is a ”kernel function” K such that K(xi,xj) = φ (xi)• φ (xj), then we do not need to know
or compute φ at all!! That is, the kernel function defines inner products in the transformed space.
Or, it defines similarity in the transformed space.

Radial Η

φ

24

Non-linear SVMs
So, the function we end up optimizing is:
Ld = ∑ai – ½∑aiaj yiyjK(xi•xj),

Kernel example: The polynomial kernel
K(xi,xj) = (xi•xj + 1)p, where p is a tunable parameter
Note: Evaluating K only requires one addition and one exponentiation
more than the original dot product

Examples for Non Linear SVMs

() (), 1
p

K = ! +x y x y

() { }
2

2
2

, expK
!

"
= "

x y
x y

() (), tanhK ! "= # $x y x y

1st is polynomial (includes x•x as special case)
2nd is radial basis function (gaussians)
3rd is sigmoid (neural net activation function)

25

We’ve already seen such nonlinear
transforms…

• What is it???

• tanh(β0xTxi + β1)

• It’s the sigmoid
transform (for neural
nets)

• So, SVMs subsume
neural nets! (but w/o
their problems…)

Inner Product Kernels

Actually works only for
some values of β0 and
β1

tanh(β0xTxi + β1)Two layer neural net

The width σ2 is
specified a priori

exp(1/(2σ2)||x-xi||2)Radial-basis function
(RBF)

Power p is specified a
priori by the user

(xTxi + 1)pPolynomial learning
machine

Usual inner productInner Product Kernel
K(x,xi), I = 1, 2, …, N

Type of Support Vector
Machine

26

Kernels generalize the notion of ‘inner
product similarity’

Note that one can define kernels over more than just
vectors: strings, trees, structures, … in fact, just about
anything

A very powerful idea: used in comparing DNA, protein
structure, sentence structures, etc.

Examples for Non Linear SVMs 2 –
Gaussian Kernel

Gaussian

Linear

27

Nonlinear rbf kernel

Admiral’s delight w/ difft kernel
functions

28

Overfitting by SVM

Every point is a support vector… too much freedom to bend to fit the
training data – no generalization.
In fact, SVMs have an ‘automatic’ way to avoid such issues, but we
won’t cover it here… see the book by Vapnik, 1995. (We add a
penalty function for mistakes made after training by over-fitting: recall
that if one over-fits, then one will tend to make errors on new data.
This penalty fn can be put into the quadratic programming problem
directly. You don’t need to know this for this course.)

Yanpu Li

