
Lecture 10: Support Vector Machines

Haim Sompolinsky, MCB 131, Monday, March 2, 2015

1 The Optimal Separating Plane

Suppose we attempt to learn rules that are linearly separable using a percep-
tron architecture, with a number of examples that are significantly smaller than
N . In this case, finding a separating plane will not be difficult; however, the
generalization performance may be problematic. This is because the volume of
possible solutions is so large that it is likely that different solutions vary sig-
nificantly in their performance on test examples. On the other hand, there is
no guarantee that the PLA chooses a particularly good generalizer. We would
therefore like to devise a learning algorithm that will yield not only a separating
plane of our training data but one which is a good candidate for generalization.
Strictly speaking, this is impossible to achieve because the identity and proper-
ties of a good generalizer varies from one problem to another, in a way that is
not known to the learner. Nevertheless, we can use heuristic arguments which
allow us to deduce which solution is a candidate for a reasonable generalization
on the basis of the properties of the hyperplane with respect to the training set.
This will be formulated below by the concept of optimal hyperplane.

Within the framework of Support Vector Machines (SVMs), the optimal hyper-
plane is defined as the separating plane (of a given training set) that maximizes
the distance between the closest input vector to it among all hyperplanes that
correctly separate the training data. Using the notation introduced in previous
lecture, the optimal hyperplane is a solution with maximum margin. The geom-
etry of the hyperplane with maximum margin, and its margin, �, is illustrated
in Fig. 1. It has two parallel planes on both sides, with equal distance from it,
called the supporting planes. They which contain the examples nearest to the
optimal hyperplane.

The intuition behind the choice based on the maximum margin is as follows.
We expect that to be a good generalizer the solution should classify new inputs
that happen to be near one of the training examples with the same label as that
example. This is reasonable for rules and input distribution that enjoy some
smoothness properties. While this is guaranteed for examples away from the
separating plane, the extent in which this holds for inputs near the separating

1

Lecture 11: Support Vector Machines

Haim Sompolinsky, MCB 131, Wednesday, March 1, 2017

plane depends on the size of the margin. Thus, maximizing the margin ensures
robustness of the classification to a significant jitter in the location of all exam-
ples. The Note that SVMs is an example of large margin classifiers, all of which
attempt to maximize the distances of the training points from the separating
plane. SVM is characterized by focussing on maximizing the minimum distance.

The choice of optimality by SVM is further supported by the existence of a
bound on the expected generalization error of for any separating plane w of
some training sets, of the form

h✏
g

(w)i  1

P

h X

2

�

2

(w)

i (1)

where X is the maximum norm of the minimum margin vector(s) and the aver-
aging is over all possible sampling of training data.

We will now recapitulate the above discussion, by a a formal definition of the
optimal hyperplane. For ~

W to be the optimal hyperplane, it must obey two
requirements. First,

y

µ

0

~

W · ~xµ

> 0, 8µ1...P (2)

i.e., the plane correctly separates the training data. Second,

~

W = argmax

~

W

�(

~

W) (3)

where,

�(

~

W) = min

µ

�

µ

(

~

W) (4)

�

µ

=

y

µ

0

~

W · ~xµ

|| ~W ||
> 0 (5)

2

1.1 *Uniqueness of the optimal hyperplane

Theorem: The hyperplane with maximum margin is unique (Vapnik, 1998)

Proof: For each separating plane define

⇢(

~

W) ⌘ min

µ

y

µ

0

~

W · xµ

(this is not the margin because of the lack of division by the size of ~

W). Two
simple but useful properties are that ⇢ is continuous and that ⇢(c

~

W) = c⇢(

~

W)

for every c > 0. Now, we are concerned with hyperplanes, so the size of ~

W does
not matter, just its orientation (the normalized margin cancels out the size of
the hyperplane). So let us look at the set of vectors ~

W with norm
�

�

�

~

W

�

�

�

 1.
⇢ is continuous, and this set is compact, so ⇢ attains a maximum at some
point there. Can this be an interior point (i.e.

�

�

�

~

W

�

�

�

< 1)? No, because then

⇢

✓

~

W

| ~W |

◆

=

1

| ~W |⇢
⇣

~

W

⌘

> ⇢

⇣

~

W

⌘

– in other words, this cannot be the maximum

because ~

W

| ~W | has a larger value of ⇢. Thus the maximum is attained on the

sphere
�

�

�

~

W

�

�

�

= 1. This is useful because on the sphere, ⇢ is of course equal to
the normalized margin, so the maximal point(s) of ⇢ on the sphere are precisely
those of the true, normalized margin.

We must now prove that the maximum can only be attained at one point. To do
this, we first note that ⇢ is concave, since min

µ

(↵y

µ

0

~

W

1 ·xµ

+(1�↵)y

µ

0

~

W

2 ·xµ �

3

↵min

µ

y

µ

0

~

W

1 ·xµ

+(1�↵)min

µ

y

µ

0

~

W

2 ·xµ

) Now, assume that there are two points
on the sphere on which the maximum is attained. By the concavity of ⇢, there
must be a point on the line between them – which lies inside the sphere – on
which ⇢ is also maximal. But, as we saw before, this means that there is a
maximum in the interior of the sphere which is impossible, as we have shown
above. Thus, there can be only a single point on the sphere on which the
maximum of ⇢ is attained, and this is (as mentioned before) the orientation of
the hyperplane with maximal margin, thus proving the theorem.

Indeed, in worst cases, the convergence time of the PLA can be in worst cases
can be extremely long since there might be two examples with opposite lables
but very close to each othe which will make �

max

very small. However, the
typical behavior can be evaluated from the following scenario. Imagine the
inputs are generated from a gaussian distribution where each component is
hxµ

i

i = 0 and variance 1/N . so that the norm of the inputs is 1 on average.
Then, the probaility of a random example to have a small (relative to �) margin
�

µ is roughly �

µ

/� = �

µ

p
N . Thus, the probability that there will be one

example with margin � is P (�) ⇡ P �

p
N . So the minimal margin is given by

the condition P (�) = 1, from which we obtain

� ⇡ 1

P

p
N

, n ⇡ P

2

N (6)

2 Computing the optimal hyperplane: The Pri-
mal Problem

To find the optimal ~

W it is useful first, to get rid of the denominators || ~W ||
in the definition of the margins 5, since it is cumbersome to deal with such a
nonlinear operation. To do this we note that we can always multiply a weight
vector by a positive constant without changing how it separates the training
data, nor its margins (since the distances contain a normalization by the size of
the weight vector). Thus, for each separating plane, we can choose its norm to
be 1/�, i.e.,

�(

~

W) =

1

|| ~W ||
(7)

With this normalization, the examples with the minimal margin obey,

� =

y

µ

0

w

T

x

µ

||w|| = �y

µ

0

w

T

x

µ (8)

so that

4

y

µ

0

~

W · ~xµ

= 1 (9)

and for all examples 2 becomes y

µ

0

~

W · ~xµ

= �

µ

/�,

y

µ

0

~

W · ~xµ � 1, 8µ (10)

The closest examples obey of course the equality relation. Thus we can replace
the condition on the optimal plane by requiring that the corresponding weight
vector obeys:

~

W = argmax

~

W

(

1

|| ~W ||
| yµ

0

~

W · ~xµ � 1, 8µ
)

. (11)

Thus, finding the optimal plane is equivalent to solving the following optimiza-
tion problem:

w

opt

= argmin

w

n

w

T

w | yµ
0

~

W · ~xµ � 1, 8µ
o

. (12)

3 The Dual Problem

The dual formulation is based on Kůhn-Tucker Theorem. KT Theorem
generalizes the method of Lagrange multipliers-which deals with optimization
with equality constraints, to solving optimization problems with inequality con-
straints, as in our case. Further, we will utilize the fact that ours is a problem
of convex optimization (where both the function to be optimized is convex and
the set of constraints are convex).

The K-T theorem relates the solution to 12 to the following Lagrangian,

L(w,↵) =

1

2

w

T

w +

P

X

µ=1

↵

µ

(1� y

µ

0

~

W · ~xµ

)

In this equation, w is N dimensional as before,↵ is a P dimensional vector
whose components ↵

µ

are the Lagrange multipliers associated with each of the
inequality constraints. These auxiliary variables are constrained to be non-
negative which we will denote as ↵ � 0. Now, let us fix w and maximize L wrt
to ↵

L

max

(w) = max

↵�0

L(w,↵) (13)

5

It is easy to see that for all w that violates the constraints in our primal problem,
L

max

= 1 (because we can choose the corresponding ↵s to be 1. On the other
hand for w that obeys all the constraint, maximizing L will necessarily mean
that for all µthat are obeyed as strict inequalities, ↵

µshould vanish. For the
inequalities that are obeyed as equalities, namely they are not active, ↵can be
positive, i.e.,

y

µ

0

w

T

x

µ � 1, 8µ (14)

↵

µ � 0, 8µ (15)

↵

µ

(1� y

µ

0

w

T

x

µ

) = 0, 8µ (16)

Thus, for all w that obeys the constraint L

max

(w) = w

T

w. Hence, we can
conclude that the optimal w obeys the following property

w

opt

= arg

⇢

min

w

max

↵�0

L(w,↵)

�

(17)

Consider now the dual operation. Fix ↵ � 0 and evaluate

L

min

(↵) = min

w

L(w,↵) (18)

By differentiating wrt w and solving for @L/@w = 0, this will yield,

w =

P

X

µ=1

↵

µ

y

µ

0

x

µ (19)

Now solve the dual problem,

↵

0

= arg

⇢

max

↵�0

min

w

L(w,↵)

�

(20)

By substituing 19 back into L we obtain, that the dual problem is equivalent
to:

↵

0

= arg

⇢

max

↵�0

Q(↵)

�

(21)

Q(~↵) =

1

2

�

�

�

�

�

p

X

µ=1

↵

µ

y

µ

0

x

µ

�

�

�

�

�

2

+

p

X

µ=1

↵

µ

(1� y

µ

0

x

µT

p

X

⌫=1

↵

⌫

y

⌫

0

x

⌫

) (22)

6

and thus

Q(↵) =

p

X

µ=1

↵

µ

� 1

2

p

X

µ,⌫=1

↵

µ

↵

⌫

y

µ

0

y

⌫

0

x

µT

x

⌫ (23)

Do these two calculation coincide?

It turns out for problems like ours (where both the objective function and the
constraints are convex), the outcome of the primal and dual operations is the
same. Specifically, for the convex case, KT theory states

1. There is a set ↵

0

� 0 such that together with w

optobey,

L(w

opt

,↵

0

) = min

w

max

↵�0

L(w,↵) = max

↵�0

min

w

L(w,↵) (24)

2. The solution obeys the following Kuhn� Tucker conditions:

w =

P

X

µ=1

↵

µ

y

µ

0

x

µ (25)

y

µ

0

w

T

x

µ � 1, 8µ (26)

↵

µ � 0, 8µ (27)

↵

µ

(1� y

µ

0

w

T

x

µ

) = 0, 8µ (28)

3. The KT conditions are also sufficient conditions for yielding an optimal w.
The importance of the dual formulation is first it provides a simpler objective
function, Q(↵) , 23, since the inequalities ↵ � 0 have simpler form than the
constraints on w . Once ↵ is found, wopt is calculated via 19 . Furthermore, the
associated KT conditions reveal the structure of woptas we will discuss below.

4 The Support Vectors

From 19 we learn that the optimal weight vector can be expressed as a linear
combination of the input vectors that appear in the training set, and this holds
even when P < N . This is reasonable since adding a component orthogonal
to them will increase its magnitude without affecting any of the constraints.
Furthermore, the optimal weight vector is specified by only a subset of the
examples, which have the minimal margin with respect to it, i.e., they lie on the
supporting hyperplanes . This makes sense, since it is clear from the geometry
of the problem that changing slightly the positions of the other vectors is not

7

going to change the location of the optimal hyperplane. The vectors with active

constraints, namely those for which ↵

µ

> 0 are called the support vectors.

These results have important consequences for the generalization problem. First,
the solution is specified by a number of parameters that is bounded by the num-
ber of examples, P , and not by the number of components, N . This is important
when P is much less than N . Furthermore, in many problems the number of
support vectors is substantially smaller than P which means that the solution
has a sparse representation in terms of the support vectors, once again, a good
sign for generalization. This is expressed by the following bound on the gener-
alization error of the optimal plane,

h✏
g

(P � 1)i  hK(P)i
P

(29)

where K is the number of essential support vectors of the training set (essential
support vecors are those that appear in all possible expansion of wopt) and the
average is over all samplings of the P training sets.

5 The Role of Dot-Products

A by-product of the SVM is the fact that if we focus on the optimal hyperplane
we can characterize the entire operation of the system by dot products and
support vector coefficients without explicit reference to the w itself. To see this
note that substituting Eq.19 into w

T

x, where x is any vector in R

N , we can
write the output of the system after learning, for any for any input vector x as

y(x) = sign

(

P

X

µ=1

↵

µ

y

µ

0

x

µT

x

)

(30)

Similarly, for learning all we need is to compute the PxP matrix

K

µ,⌫

= x

µT

x

⌫ (31)

This will be the basis of an important generalization of the SVM which will be
discussed in the next lecture.

5.1 *The Adatron Algorithm

Here we describe a simple learning algorithm for solving the Dual Problem,
called Adaptive Perceptron (Adatron). As we will show, the Adatron algorithm
asymptotically approaches the global maximum of Q. While this is not the most
efficient algorithm for solving this problem (better ones exist), it is the simplest.

8

Like the perceptron learning algorithm, this is an incremental learning method
that looks at the training examples one by one, and presents them cyclically until
an entire cycle is completed without any alterations made. However, unlike the
Perceptron Learning, Adatron does not act directly on the components of the
weight vector but acts on the parameters ~↵. In fact, as we will see, in Adatron,
at each step, we receive an example, say ⌫ and update only the estimate of the
corresponding coefficient ↵

⌫

.

The algorithm is as follows:

1) Begin with the values
�

↵

0

µ

= 0

P

µ=1

(with some initial guess of P).

2) Present examples one by one. At each step n+ 1 an example ⌫ is presented.
Update the value of ↵

⌫

, according to the following rule:

�↵

n

⌫

= ↵

n+1

⌫

� ↵

n

⌫

= max {�↵

n

⌫

, ⌘(1� h

n

⌫

)} (32)

where h

n

⌫

⌘ y

⌫

0

~

W

n · ~x⌫ is the total signed input to the decision neuron. These
quantities are evaluated by substitution of ??, yielding

h

n

⌫

=

X

µ

y

⌫

0

y

µ

0

~x

µ · ~x⌫

↵

n

µ

(33)

Adatron Theorem: For 0 < ⌘ <

2

D

[where D = max

µ

||~xµ||], Adatron con-
verges asymptotically (i.e., in the limit n ! 1) to a set {↵

µ

} that solves the
Dual Problem.

Proof of convergence:

First, note that ↵n

µ

� 0, 8n, µ, since at each step we add at least enough to keep
things equal to zero or higher. Second, let us compute the change in the value
of Q, ?? at each step. To do this, we will consider �Q

n ⌘ Q

n+1 �Q

n:

�Q

n

= �↵

n

⌫

��↵

n

⌫

(

P

X

µ=1

↵

µ

y

⌫

0

y

µ

0

~x

⌫ · ~xµ

)� 1

2

(�↵

n

⌫

)

2 k~x⌫k2 (34)

= �↵

n

⌫

��↵

n

⌫

h

n

⌫

� 1

2

(�↵

n

⌫

)

2 k~x⌫k2 (35)

= �↵

n

⌫

(1� h

n

⌫

� 1

2

(�↵

n

⌫

) k~x⌫k2) (36)

Our goal is to show that this is positive. We will now consider the possible
cases.

(1) Assume that 1 � h

n

⌫

> 0. Then �↵

n

⌫

= ⌘ (1� h

n

⌫

) (since we change by the
maximum of this value and something non-positive, and this itself is positive).
In this case

�Q

n

= �↵

n

⌫

✓

1

⌘

�↵

n

⌫

� 1

2

�↵

n

⌫

k~x⌫k2
◆

=

(�↵

n

⌫

)

2

⌘

(1� 1

2

⌘ k~x⌫k2)

9

It is now clear that if we choose ⌘: ⌘ <

2

max

µ
k~xµk , then �Q

n

> 0.

(2) Assume that 1� h

n

⌫

 0. Thus �↵

n

⌫

 0. Recall that it is always true that
�↵

n

⌫

� ⌘ (1� h

n

⌫

). Multiplying this by �↵

n

⌫

 0, we get

�↵

n

⌫

(1� h

n

⌫

) � (�↵

n
⌫)

2

⌘

and thus,

�Q

n � (�↵

n

⌫

)

2

⌘

� 1

2

(�↵

n

⌫

)

2 k~x⌫k2 =

(�↵

n

⌫

)

2

⌘

(1� 1

2

⌘ k~x⌫k2)

Like in the previous case, if ⌘ <

2

max

µ
k~xµk , then �Q

n � 0.

We have shown that the Adatron algorithm increases Q over time. Since Q is
clearly bounded from above (Exercise: Explain why we know that Q is bounded
from above), and increases at each step, the algorithm much reach a fixed point
at long time. Substituting �↵

⌫

= 0 for all ⌫ into the algorithm results in:

(1) All examples must obey 1 � h

n

⌫

 0 otherwise there will be necessarily an
update.

(2) Those with 1� h

n

⌫

< 0 must have ↵

µ

= 0 so there is no update also in this
case.

Together with ??, this shows that the fixed point obeys K-T conditions, hence
it is the optimal weight vector.

More directly, assume we reached the fixed point of the Learning Algorithm,
denote it by ↵

⇤. Assume that this is not the maximum of Q (under the constraint
~

↵ � 0. Then, since Q is a convex function it does not have local maxima. Thus,
the only possibility is that at ↵

⇤there are some allowed directions which will
still increase Q. To see whether this is possible, let us compute the gradient of
Q, which can be easily computed,

@Q

@↵

µ

= 1� h

µ

Since we have shown that at the fixed point, these quantities are non-positive,
the only possiblity we have to consider is the case where

1 � h

µ

< 0 . Increasing Q along this direction requires decreasing the corre-
sponding ↵

µ

. However, we have shown that at the fixed point these components
are zero, hence we are not allowed to decrease its values. Hence ↵

⇤must be a
maximum of Q .

10

Lecture 11: Non-Linear SVMs and The Kernel

Method

Haim Sompolinsky, MCB 131, March 4, 2015

1 Non-linearly separable data: The Feature Space

We now consider the second feature of Support Vector Machines, which is their
ability to handle non-linearly separable data – which is a common occurance
in real-world problems. The basic idea is to preprocess the training data by
mapping it into a higher dimension. The lower dimensional inputs become
feature vectors in a higher dimension. If the dimensionality of the feature vector
space, is large enough then linear separation should be possible.

More formally, let the original training samples be {~xµ}P
µ=1. Let �(x) be a

transformation from the original space of the training samples to another, � :

RN ! RM , defined by �(~x) = (�1(~x), ...,�M

(~x)). In the SVM the network
operates as a perceptron in the new space, characterized by an M dim weight
vector ~

W , and the final output of the network is y(~x) = sign(

~

W · �(~x)). A
graphic illustration of this architecture is shown in Figure 1.

Figure 1: Embedding Input in a High Dimensional Feature Space

1

Typically we will choose M � N , so that the training examples will be separable
in the very high-dimensional space that � maps to, due to Cover’s theorem (as
long as M is larger than the size of the training set, P). It must be noted that
not all choices of � will work. In particular, linear functions are not useful as
they map the inputs into an N dimensional hyperplane embedded in the M dim
space, so this will not change their separability properties. In general, � must
be a nonlinear function that embeds the P N -dim vectors into points which are
in general position in R

M . The example feature vectors that will be mentioned
later all have the desired property.

The idea that preprocessing inputs by mapping them into a high dimensional
space, renders them more easily separable (and in particular, separable by a
linear classifier) is one of the oldest ideas in computational neuroscience. As
we will see in a later section, Marr’s theory of the Cerebellum, discussed later
suggests that the first stages of Cerebellar circuitry do precisely this operation.
More generally, as shown in section (Introduction to Neural Representations),
many brain systems exhibits expansion of representation, and this might be
partly their function.

Although the use of the above feature space will make the examples linearly
separable, implementing it, we are faced with two problems:

1. Generalization: Mapping to a larger space, generalization error may suffer,
because M is large in relation to P .

2. Computation: Working in high dimension substantially increases the com-
putational costs. Also, as we will see, some useful feature spaces are of infinite
dimensions, so we need an alternative compact architecture to represent this
computation.

SVMs offer the following solutions to these two problems:

Generalization: The weights for the second layer should be chosen not simply
by demanding that w separates the examples, but that it is the optimal hyper-
plane in the feature space. This ensures that w has a ’compact’ representation
in terms of at most P support vectors (regardless of M) and is a good candidate
for yielding a good generalization.

Computation: To solve this problem, the SVMs uses the Kernel method,
which implements the same computation as the system of Fig. 1 but with a
more compact architecture.

2 The Kernel Method

We assume that in the large feature space we choose W to be the optimal
hyperplane. Therefore, the output of the network is y = sign(

~

W ·�(~x)), where

2

~

W =

PX

µ=1

↵

µ

y

µ

0�(~x
µ

) (1)

Thus what appears inside the sign operation is ~

W ·�(~x) =
PP

µ=1
↵

µ

y

µ

0�(~x)·�(~xµ

).

Note that the only way that � appears here is as part of an inner product with
another �. Let us therefore define

K(~x, ~y) = �(~x) · �(~y) (2)

Here ~x, ~y are of dimension N , and �(~x),�(~y) are of dimension M , as before.
Thus the output of the network is

y(~x) = sign

PX

µ=1

↵

µ

y

µ

0K(~x, ~x

µ

)

!
(3)

The function K is called a Kernel function. Note that K is a transformation
from two vectors of size N to a scalar value – the large space of dimension M is
not a problem here, in the sense that if we know the form of the function K(·, ·)
then we don’t need to perform operations in the large space of dimension M !

What about the learning stage? As is seen in 3 all we need to know is the the
values of ↵

µ

. Can we evaluate those without working directly in the feature
space? The answer is positive if we use the dual method. The reason is that
the dual objective function has the form

Q(~↵) =

PX

µ=1

↵

µ

� 1

2

PX

µ,⌫=1

↵

µ

↵

⌫

y

µ

0 y
⌫

0 �(~x
µ

) · �(~x⌫

)| {z }
K(~x,~xµ)

, ↵ � 0 (4)

Once again, the Kernel is all we need, since only dot products of pairs training
feature vectors appear in Q . So, any method of computing ↵from maximizing
Q can be used simply by replacing the dot products of the linear separability
case, ~x⌫ ·~xµ , by the general matrix constructed from K(~x, ~x

µ

). When doing so,
we will in effect find a hyperplane in an M -dimensional space without having
to perform the numerical calculations in that space.

Graphically, the Kernel method replaces the original feature vector architecture
of Figure 1 with that of Figure 2. Notice how the size of the middle layer is now
only P and not M .

2.1 Example: Polynomial Kernel

Consider the following transformation:

�(~x) = (x1, x2, ..., xN

, x1x1, x1x2, ..., x1xN

, ... , x

N

x1, ..., xN

x

N

)

3

... x1 xN

... ...

y

K(x,x1)

Preprocessing
Layer

K(x,xP)

alpha1y_0_1 alphaPy_0_P

Figure 2: Kernel Architecture

4

In other words, � copies the co-ordinates of the vector, and then adds the
multiplications of every two co-ordinates. Thus the dimension of the space we
map to is M = N +N

2.

The scalar multiplication of two transformed vectors is

�(~x) · �(~y) =
X

i

x

i

y

i

+

X

i,j

x

i

x

j

y

i

y

j

= ~x · ~y + (~x · ~y)2

Thus we can write the Kernel function K (~x, ~y) = �(~x) · �(~y) as

K (~x, ~y) =

✓
~x · ~y + 1

2

◆2

� 1

4

Such a Kernel is called a Polynomial Kernel of degree 2. By changing the expo-
nent from 2 to something higher we get Polynomial Kernels of higher degrees,
such as

K (~x, ~y) = (~x · ~y + 1)

d

2.2 Mercer’s Theorem

As we have seen, the Kernel method provide us with a compact scheme of
computing with non-linear SVMs without explicitly computing with feature
space units. This suggests that our starting point may be the network with
the Kernel architecture of Figure 2. We will then use Q(↵) to learn the output
weights and the input arguments of the Kernels. This raises the question can any
Kernel be used with this learning scheme? Will any kernel lead to a convergence
of the dual problem to a solution for ↵?

We can provide the following sufficiency conditions for the Kernel: As long as
the kernel function can be expanded in a basis of feature functions, we can use
SVM (dual) learning . The reason is straightforward. If such expansion exists we
can write down the same architecture in the feature space and use linear SVM
learning, which as shown above is completely equivalent to the Kernel method.
Thus, we need to know for which Kernels there exists a vector function �(x)

(possibly of infinite dimensionality) such that K (~x, ~y) = �(~x) · �(~y)? The
answer is given by

Mercer’s Theorem: For any Kernel function, K(x, y) , there exists a mapping
from x to a set of real scalar functions (generally infinite number of them, i.e.,
they form a Hilbert Space) �

l

such that the kernel K can be written as a dot
product,K (~x, ~y) = �(~x) · �(~y), iff;

(1) K(~x, ~y) = K(~y, ~x), 8~x, ~y (symmetry)

(2) K is positive semi-definite, i.e.:
´ ´

f(~x)K(~x, ~y)f(~y)d~xd~y � 0 for every
function f for which

´
f(~x)

2
d~x < 1.

5

Note 1: As we will see below, a kernel that meets Mercer’s condition can be
expanded in terms of orthogonal sets of � s.

Note 2: Mercer’s theorem can be generalized to kernels which are functions of
pairs of elements in some general sets other than vectors in R

N [e.g., Watkins
(200). This has greatly extended the use of Kernels.

Proof (qualitative): Mercer’s theorem is based on extending the properties
of symmetric matrices in finite dimensions, to the infinite dimensional case.
Thus, in analogy to symmetric matrices, symmetric Kernels have a countable
orthogonal basis of eigenvectors with real and positive eigenvalues, hence:

K(x, y) =

X

l

u

l

(x)u

l

(y)k

l

=

X

l

�

l

(x)�

l

(y) (5)

K(x, y) =

X

l

u

l

(x)u

l

(y)k

l

(6)

where k

l

real and are the spectra of K analogous to eigenvalues of finite dim
matrices. Furthermore, if the kernel is positive semi definite, then all k

l

� 0.
Hence, one can write

K(x, y) =

X

l

�

l

(x)�

l

(y) (7)

with,

�

l

(x) =

p
k

l

u

l

(x) (8)

The converse part of the theorem is straightforward (why?).

An example with infinite dimensional feature space: Consider 1D input
space and a kernel of the form,

K(x, y) = e

xy (9)

This corresponds to the infinite-dimensional �space:

�(x) = (1, x,

x

2

p
2!

,

x

3

p
3!

, ...)

since,

K(x, z) = �(x) · �(z) =
1X

k=0

(xz)

k

k!

= e

xz

Hence the quite innocent Kernel allows us to perform operations in an infinite-
dimensional space.

6

Admissible Kernels:

1. Sums of admissible kernels is an admissible kernel.

2. Products (either element-wise or outer products) of admissible kernels is
admissible.

3. Dot product kernels: iff its Taylor series has non-negative coefficients.

Examples: Polynomial kernels

3. Translational invariant kernels: iff their Fourier transform is positive.

A commonly-used Kernel is the Radial Basis Function (RBF) Kernel,

K(~x, ~z) = exp

✓
� ||~x� ~z||2

2�

2

◆

which can be shown to fulfill the conditions of Mercer’s Theorem, and to also
correspond to a � that maps into an infinite-dimensional space.

4. Logistic function

K(x · y) = 1

1 + exp (�x · y � ✓)

in general not. Only in restricted cases: For instance if all x and y have norm
1 and �  ✓ , in which case one can transform it into a Radial Basis form.

Take home message: The importance of the Kernel method that the effective
dimensionality, i.e., the number of modifiable parameters is set by the number
of available examples and not by the dimensionality of the feature basis for the
Kernels, which in fact maybe infinite.

An example of this point is in the following table (from Vapnik’s book) regard-
ing application of SVM to the benchmark problem of handwritten character
recognition. What is remarkable is that despite the enormous growth in the di-
mensionality of the feature space for polynomial kernels, the number of support
vectors increases very modestly.

Bibliography:

1. The best source is the book by one of the main ’inventors’ of SVMs: Vladimir
N. Vapnik: Statistical Learning Theory.

2. There are several good tutorials or reviews on SVMs. One (posted on the
course website) is:

Christopher Burges: A Tutorial on Support Vector Machines for Pattern Recog-
nition.

7

Figure 3: Polynomial Kernels and the number of support vectors

8

