STACKED GENERALIZATION

by David H. Wolpert

Complex Systems Group, Theoretical Division, and Center for Non-linear Studies, MS B213,
LANL, Los Alamos, NM, 87545 (dhw@tweety.lanl.gov) (505) 665-3707.

Thiswork was performed under the auspices of the Department of Energy.

LA-UR-90-3460

Abstract: This paper introduces stacked generalization, a scheme for minimizing the generalization
error rate of one or more generalizers. Stacked generalization works by deducing the biases of the
generalizer(s) with respect to a provided learning set. This deduction proceeds by generalizing in
a second space whose inputs are (for example) the guesses of the original generalizers when taught
with part of the learning set and trying to guess the rest of it, and whose output is (for example) the
correct guess. When used with multiple generalizers, stacked generalization can be seen as a more
sophisticated version of cross-validation, exploiting a strategy more sophisticated than cross-vali-
dation’s crude winner-takes-all for combining the individual generalizers. When used with a single
generalizer, stacked generalization is a scheme for estimating (and then correcting for) the error of
a generalizer which has been trained on a particular learning set and then asked a particular ques-
tion. After introducing stacked generalization and justifying its use, this paper presents two numer-
ical experiments. The first demonstrates how stacked generalization improves upon a set of sepa-
rate generalizers for the NETtalk task of translating text to phonemes. The second demonstrates
how stacked generalization improves the performance of a single surface-fitter. With the other ex-
perimental evidence in the literature, the usual arguments supporting cross-validation, and the ab-
stract justifications presented in this paper, the conclusion is that for almost any real-world gener-
alization problem one should use some version of stacked generalization to minimize the general-
ization error rate. This paper ends by discussing some of the variations of stacked generalization,

and how it touches on other fields like chaos theory.

Key Words:
generalization and induction, combining generalizers, learning set pre-processing, cross-

validation, error estimation and correction.

INTRODUCTION

This paper concerns the problem of inferring a function from a subB&ttofa subset of
RP (theparent function) given a set of m samples of that function (gaening set). The subset of

RMis theinput space, and the subset &P is theoutput space. A questionis an input space (vector)

value. An algorithm which guesses a parent function, basing the guess only on a learning set of m

RM*Pvectors read off of that parent function, is callegaeralizer. A generalizer guesses an ap-
propriate output for a question via the parent function it infers from the learning set. For simplicity,
although the analysis of this paper holds for any positive integer p, unless explicitly indicated oth-
erwise | will always take p = 1.

In this paper | am usually assuming noiseless data. This means that the best guesses for the
inputs of elements of the learning set are already known to us - they are provided by the learning
set. Building a system to guess properly for those elements - i.e., "learning that learning set" - is
trivial, and can be achieved simply by building a look-up table. (Difficulties only arise when one
insists that the look-up table be implemented in an odd way, e.g., as a feedforward neural net.)
Therefore in this paper the questions of interest are almost always outside of the learning set.

Some examples of generalizers are back-propagated neural nets (Rumelhart and McClel-
land 1986), Holland’s classifier system (Holland 1975), and Rissanen’s minimum description
length principle (Rissanen 1986) (which, along with all other schemes which attempt to exploit Oc-
cam’s razor, is analyzed in (Wolpert 1990a)). Other important examples are memory-based reason-
ing schemes (Stanfill and Waltz 1986), regularization theory (Poggio et al. 1988), and similar
schemes for overt surface fitting of a parent function to the learning set (Wolpert 1989, Wolpert
1990a, Wolpert 1990b, Farmer and Sidorowich 1988, Omohundro 1987).

In this paper | will primarily be interested in generalizers which are capable of guessing as
output a number which does not occur as an output value in the learning set. Conventional classi-

fiers (e.g. ID3 (Quinlan 1986), Bayesian classifiers like Schlimmer’s Stagger system (Dietterich

1990), etc.) don’t have this flexibility, although in all other respects they are valid examples of gen-
eralizers.

This paper introduces stacked generalization, a technique whose purpose is to achieve a
generalization accuracy (as opposed to learning accuracy) which is as high as possible. The central
idea is that one can do better than simply list all guesses as to the parent function which are con-
sistent with a learning set (as is done in PAC-style learning (Dietterich 1990, Valiant 1984), for
example). One can also use in-sample/out-of-sample techniques to try to find a best guesser of par-
ent functions (or to try to find a best combination of guessers of parent functions). By creating a
partition of the learning set, training on one part of the partition, and then observing behavior on
the other part, one can try to deduce (and correct for) the biases of one or more generalizers with
respect to that learning set. Loosely speaking, in addition to finding all theories consistent with a

set of data, by means of partitions of the data one can also construct a best theorist, and then use

whichever theory it prefer%.

There are many different ways to implement stacked generalization. Its primary implemen-
tation is as a technique for combining generalizer, although it can also be used when one has only
a single generalizer, as a technique to improve that single generalizer.

For any real-world learning setthere are always many possible generalize[}sQfEe can

use to extrapolate frof One isalways implicitly presented with the problem of how to address

this multiplicity of possible generalizers. Most algorithmic schemes for addressing this problem,
including in particular non-parametric statistics techniques like cross-validation (Efron 1979,
Stone 1977), generalized cross-validation (Li 1985) and bootstrapping (Efron 1979), are winner-
takes-all strategies. These schemes can be viewed as mappings which take an arbitrary generalizer
and learning set as input, and give as output an estimate of the average generalizing accuracy of
that generalizer, for the unknown parent function which generated the learning set. To use such a

mapping one simply picks that[G{G;} which, together witt9, has the highest estimated gener-
J

alization accuracy according to the mapping, and then uses that G to generali@e from

In contrast, stacked generalization provides a strategy for this situation which is more so-

phisticated than winner-takes-all. Loosely speaking, thisstrategy isto combinethe { Gj} rather than

choose one amongst them. This can be done (for example) by taking their output guesses as input
components of pointsin anew space, and then generalizing in that new space. (Seefigure 1.)
Later on in this paper winner-takes-all strategieswill be shown to be aspecial case of using
stacked generalization in this manner, where one is doing the generalization in the "new space" by
means of aglobal fit of a highly restricted hyperplane. Accordingly, stacked generalization can be
viewed as a more sophisticated version of non-parametric statistics techniques like cross-valida-
tion. In particular, all the usual arguments supporting such techniques apply even more strongly to
stacked generalization, and therefore it can be argued that for almost any generalization or classi-
fication problem, since invariably there is more than one generalizer which can be applied to the

problem, to maximize the generalization accuracy one should use stacked generalization rather

than any single generalizer by itself 2
In addition to viewing it as an extension of concepts like cross-validation, stacked general-

ization can also be viewed as a means of collectively using all of the{Gj} to estimate their own

generalizing biases with respect to a particular learning set, and then filter out those biases. This
description is particularly apt in the variation of stacked generalization appropriate when one only
has a single generalizer. In such a situation, stacked generalization is (overtly) a scheme for esti-
mating the errors of a generalizer when working on a particular learning set, and then correcting
those errors. (Seefigure 2.)

Section | of this paper presentsarigorous definition of stacked generalization and discusses
why it would be expected to improve generalization accuracy. Section |1 of thispaper then presents
two experimental examples of using stacked generalization. Thefirst isusing it to improve the per-
formance of asingle generalizer (here an explicit surface-fitting algorithm). The second isusing it
to improve upon the individual performance of several generalizers for amodified version of the

text-to-phoneme data set that went into making NETtalk (Stanfill and Waltz 1986, Wol pert 1990b,

Carterette and Jones 1974, Sejnowski and Rosenberg 1988). Section Ill then discusses some of the
myriad variations and extensions of stacked generalization, some of the ways it can be approached
theoretically, and some heuristics concerning the scheme’s behavior.

It would be impossible to investigate in great depth all of the theoretical and empirical is-
sues concerning stacked generalization in a single paper. This paper is instead intended to serve as

a broad introduction to the idea of stacked generalization and its many variations.

HOW STACKED GENERALIZATION WORKS

For full rigor, 1 will first provide a mathematical definition of a generalizer. Then | will de-
fine the process of stacked generalization, giving a rigorous definition of cross-validation along the
way. Unfortunately, it's in the nature of stacked generalization that presenting it in full generality
and full rigor makes it appear more complicated than it really is. At the end of this section, two
examples are provided to mitigate this effect. The first example is of a way to use stacked general-
ization with multiple generalizers, and the second example is of a way to use it with a single gen-

eralizer.

i) Generalizers

A generalizer is a mapping taking {a learning set of m paiY(ﬂRn, Y UR}E 1<sksm,

together with a questidn Rn} into {a guesd R}. (Full generality would have the gue@sRm,

not R. However for most applications one can replace a generalizer making gueRS&wvith
the Cartesian product of m separate generalizers making gueBse&ccordingly, in this paper
m is taken to equal 1. See (Wolpert 1989).) For a given n, such a mapping is equivalent to a count-

ably infinite set of functions {g, 1 <i <, one function for each possible value of n.takes

three arguments (the learning set inpyttke learning set outpug yand the question q)pdakes

five arguments (x, y1, X9, Yo, and q); and so on (see (Wolpert 1990c)). Often tkiedfg only

implicitly defined in the definition of the generalizer’s algorithm. This is the case with back-prop-

agation, for example. (Strictly speaking, the}of back-propagation aren't single-valued, since

they depend on the (random) initial choice of weights. This difficulty is of little consequence how-
ever, and can be avoided explicitly by averaging over a set of initial choices of the weights, for
example.) In other generalizers (e.g. generalizers which work by explicitly fitting a surface), it's

possible to write down the {pdirectly. Colloquially, one says that a generalizer’s evhen pro-
vided with the argument list §x Y4, X5, Yo, .-, %y, Yy 0}, IS being “taught” or “trained” with an
m-element learning set consisting of the elemenfsyx, X5, Yo, ..., X1, Yy» @nd is then "asked"

the question g, for which it "guesses” what the corresponding output should be. If the generalizer

returns the appropriate whenever g is equal to one of therxthe learning set, then we say that

the generalizereproduces the learning set.

In the scenario considered by this paper, we are given a learnthgfsatelementséiving
in the space’RnJ’l. Together wittD we are given a set of N generalizers]}{(there N=>1 (i.e.,
we're given a set of N separate sequences of functighs Ag an example, n could be 3, and the

learning set might consist of m elements of the form (a, b, ¢, output=a + b + c), where a, b, and c
are integers. "Correct" generalization would be to guess the parent function {output = sum of the

three input components}. N could then be four, for example, with the fpbeiﬁg ID3, back-

propagation, global fitting with a polynomial (over the n variables) of minimal order, and a local
surface-fitting technique. Since it is a classifier (see introduction), we know that ID3 can not gen-
eralize correctly for this parent function unless it is attached to a de-trending pre-processor. Similar
difficulties will affect back-propagation (see (Wolpert 1989)). Of course, none of this can be
known with certainty to someone only provided with the learnin§ aatl not with the entire par-

ent function.

In what follows | will often be a bit free with the symbols, and writ8;@j, for example,

when what | really mean is the output of the generalizer G’s m'th functigriwpere m is the

number of elements in the provided learning®etaking as argument list the enumerated ele-
ments ofd followed by the question g. Similarly, even though it itself is made up of components
(being an n-dimensional vector), | will often refer to the input space projection of a point in the full

R 1las the "input component” of that point. Moreover, | will often refer to the

input/output spac
"nearest neighbor" of a point in a space. What | really mean is the nearest neighbor of that point as
measured in the input space projection of the full space. For these and all other cases, the context

should always make the meaning clear.

i) Partition setsand cross-validation
The first step in employing stacked generalization is choosing a set of r partitions, each of

which splitsf into two (usually disjoint) sets. Label such a set of partitiorﬁiﬁ awhere I<i<r,

and j00 {1, 2}. Such a set of partitions is calleghartition set. For example, for a cross-validation

partition set (CVPS), r = m, for allfi, consists of a single elementfthe corresponding;q
consists of the rest & and6,, # sz for i #j. (Since r = m, this last requirement of distinctness
of the 6,5, means that the set of &k, coversf). One pair of such a CVPS is illustrated in both

figures 1 and figure 2. One can define a bootstrap partition set in a similar way to a CVPS, except

that (roughly speaking) the elemefifs are chosen randomly rather than in such a way as to ex-

haustively coveB with no duplications. As another example, for a GMDH partition set (Xiang-

dong and Zhaoxuan 1990) r is some divisor 08 consists of m/r element8;; n ejlz O fori

|, and as with the CVP&, =6 - 6,1 LI i. (Here it's thed;; which form a disjoint cover fod
rather than thé,,.) Partition sets of this type where r <m are particularly useful if it takes a long
time to train some of the ,;(;a

The winner-takes-all technique of cross-validation is a very straight-forward way to use a

CVPS to map a generalizer G together with a learning setan estimate of the generalization

error rate of G when generalizing from 0. Intuitively, it estimates the generalization accuracy by
seeing how well the generalizer can guess one part of the full learning set when taught with the rest
of it. Morerigoroudly, it works with the CVPS by calculating the average, over al i, of the error of

G at guessing what output corresponds to the input component of 6,5 when taught only with the

remainder of 6, 8;4: the cross-vaidation error estimate of G with respect to 6 is defined by

CV.(G,0)= Zi [G(6;4; the input component of 6,,) - (the output component of eiz)]zl m.

Thetechnique of minimal cross-validation error saysthat given aset of candidate generalizers{ Gj}
and a learning set 6, one should generalize from 6 with that generalizer G, [J {Gj} such that
CV.(G, 8) < C.V.(Gj, 0) 0j#k.

For simplicity, intherest of this paper, we will only consider the CVPS, so any set 6, con-

sists of only one element.

i) Stacked generalization

Define the RM1 space inhabited by the original learning set 8 asthe "level 0 space’. Any
generalizer when generalizing directly off of 8 inthelevel O spaceiscalled a"level 0" generalizer,
and the original learning set O is called a"level 0" learning set. For each of the r partitions of 6,
{6;1, 6;5}, look at aset of k numbers determined by (asubset of) theN {Gj} working together with

that partition. Typically these k numbers can be things like the guesses made by the { Gj} when
taught with 8;1 and presented as a question the input component of the element 6;, (i.e., Gj (6;1;
the input component of 6;,)), the input component of the element 6;,, or the vector in the input

space connecting that input component of 8;,, to its nearest neighbor in 8; 1. Take each such set of

10

k numbers and view it as the input component of a pointin a Eiﬁc"eThe corresponding output

value of each such point is calculated from the output component of the corresiiondieghaps

along with G(8;4; the input component &-) for one of the {G}. This spac:eRk+1 is called the
11 12

"level 1 space”. Since we have r partition§,0fre have r points in the level 1 space. Those r points
are known as the "reduced" or the "level 1" learning set. (In figures 1 and 2, the level 1 learning set
isL")

We wish to generalize frof by operating a generalizer in the level 1 space. We can do
this in many ways. The common idea is to take a question in the level 0 space, pass it through the
transformations which produced the input components of the level 1 learning set to get a level 1
guestion in the level 1 input space, and then answer that level 1 question by generalizing from the
level 1 learning set. This level 1 guess is then transformed back into a level 0 guess. (Said trans-

formation being determined by how the output components &ftere used to calculate the out-

put components of the level 1 learning set.) Any generalizing process of this form is known as
"stacked generalization". The process as a whole can be iterated, resulting in levels p > 1 (i.e., mul-
tiple stackings). For now, we’ll just be concerned with 2 levels stacked generalization, as described
above.

It is important to note that many aspects of stacked generalization are, at present, "black
art". For example, there are currently no hard and fast rules saying what level O generalizers one
should use, what level 1 generalizer one should use, what k numbers to use to form the level 1 input
space, etc. In practice, one must usually be content to rely on prior knowledge to make (hopefully)
intelligent guesses for how to set these details. Of course, the same use of "black art" occurs in the
rest of machine learning as well. For example, in practice most researchers currently rely on prior
knowledge of the problem domain to make a (hopefully) intelligent guess as to what generalizer to

use and how to configure it.

iv) An example of stacked generalization for the case of multiple generalizers

11

As an example of stacked generalization, assume we have an m-element leafhofg set
points living inR”+1, a set of N generalizers 1}3 and a question § R". As was mentioned be-
fore, we're restricting ourselves to the CVPS. This partition set gives us nbset8;4}, where
eachg; is a different subset of m - 1 of the element8,and6;, is the remaining element 6f

Let k = N, and have the k = N numbers used to construct the input components of an element of

the level 1 learning set be the guesses made by all N of }hw{@n taught with a particuld |
and presented with the input component of the correspofigiras a question. (In other words, a

particular point in the level 1 learning set has the N components of its input projection set to the N

numbers g(eil; the input component &,). See figures 1, 3, and 4.) Let the output component

of a point in the level 1 learning set be given directly by the output component of the corresponding

B,». Since there are r = m partitions@fthere are r = m elements in the level 1 learning set, just

like in the level O learning set. Since k = N, each point in this level 1 learning set has an N-dimen-
sional input component. To make a guess for the level 0 question g, we convert it into a level 1
guestion. We do this in the same way we made the level 1 learning set: we find the guess made in

response to the question g by all N of th?}{\@hen taught with (now the full) learning €tThese

N guesses give us the input coordinates of a question in the level 1 space, and tthangues-
tion we simply run some generalizer off of the level 1 learning set and ask it that level 1 question.
This guess for what level 1 output should correspond to the level 1 question is then taken as the
guess made by the entire stacked generalization process for what level O output should correspond
to the original level O question.

This procedure sounds complicated. It really isn’t. As an example, take the parent function
"output = sum of the three input components" mentioned in section I(i). Our learnbhghiggt
consist of the five input-output pairs (0, 0, 0; 0), (1, 0, 0; 1), (1, 2,0; 3), (1, 1, 1; 3), (1, -2, 4; 3), all

sampled with no noise from the parent function. Label these five input-output pjrstasough

B5,, With 6,1 =6 - ;5 (so for exampl®,, consists of the four pairs {(0, 0, 0; 0), (1, 2, 0; 3), (1,

12

1,1;3),(1,-2, 4; 3)}. We have two level 0 generalizefsat G,, and a single level 1 generalizer,
. The level 1 learning set L' is given by the five input-output paif¢8i@; input components of
8,5), G5(6,1; input components d,); output component &) given by the five possible values

of i. (This level 1 space has two dimensions of input and one of output.) So for example the member
of the level 1 learning set corresponding to i = 1 has output component 0 and input component

G1(611 (0,0, 0)), 5(81; (0, 0, 0)). Now we are given a level 0 questiof &, x3). We answer
it with the gues$ (L' ; (G1(6; (X1, X9, X3)), Gx(8; i(X4, X, X3)))), i.€., we answer it by trainirg

on L' and then asking it the question given by the guesses of the two level 0 generalizers which
were themselves trained on allbénd asked the question g.
The guess made by this implementation of stacked generalization is determined by com-

bining the guesses of the original Nj{GHow they are combined depends on the level 1 general-

izer used. For example, consider the following level 1 generalizer: "Fit the (level 1) learning set
with a single global hyperplane of the form {output = value of input dimension t}. There are k such
global hyperplane fits for the k possible values of t; choose the hyperplane fit with the smallest
RMS Euclidean error for fitting the level 1 learning set.” In the language of pattern recognition,
this generalizer is the rule "find which single feature (i.e., which input space component) has the
greatest correlation with the correct answer, and guess according to it". This level 1 generalizer re-

sults in a winner-takes-all strategy for using th?}{(ﬁ makes the determination of which of the
{Gj} to use by finding the PNith the minimal RMS error for predicting part of the level O learning

set from the rest. This error is calculated using the cross-validation partition set. In fact, a moment’s
thought shows that stacked generalization with this simple-minded level 1 generalizer is the exact
same generalizing process as the technique of minimal cross-validation! As was mentioned in the

introduction, cross-validation is seen to be just a (relatively uninteresting) special case of stacked

generalization, corresponding to an extraordinarily dumb level 1 gener?alizer.

As another naive example, the level 1 generalizer could be independent of the level 1 learn-

13

ing set: "make aguessfor a(level 1) question by averaging all the k components of that question”.
Another extraordinarily dumb level 1 generalizer. Y et the guesses it makes are the same as those
made by perhaps the most common currently used scheme (second to winner-takes-all schemes)
for combining generalizers; stacked generalization with thislevel 1 generalizer is exactly equiva-

lent to simply averaging the guesses made by all N of the { Gj} . A (marginally) more sophisticated
way of combining generalizersisto form a weighted average of the guesses of the { Gj} . Thisis

equivalent to having the level 1 generaizer be a schemeto fit the level 1 learning set with asingle
global hyperplane.

We can view the various commonly used schemes for combining generalizers as ssimply
special cases of stacked generalization. In all these schemes, one is implicitly confronted with a
level 1 learning set and must decide how to generalizefromiit. Y et the problem of how to generalize
fromthelevel 1 learning set isjust anormal generalization problem, in principle no different from
any other. Therefore, just as with any other generalization problem, it makes no sense to use
"dumb" generalizersto generalize from the level 1 learning set. Y et one very noticeabl e feature of
these commonly used schemes for combining (level 0) generalizersis precisely the lack of sophis-
tication of their level 1 generaizers. Therefore, just as with any other generalization problem, one
would expect improved performance - perhaps extremely improved performance - if these dumb

level 1 generalizers were replaced with more sophisticated generalizers.

V) An example of stacked generalization for the case of one generalizer
Thereisno apriori reason why the k numbers used to make the level 1 input space have to
al be the guesses of a set of generalizers. Nor is there any a priori reason why the output compo-

nents of thelevel 1 learning set have to be given directly by the output components of the ei 2- This
can beillustrated with an example of how to used stacked generalization when the set { Gj} consists

of asingle element (i.e., by an example of how to use stacked generalization to improve the behav-

ior of asingle generalizer, as opposed to using it as a means of combining a set of generalizers).

14

This example is illustrated in figure 2. (Another similar example is illustrated in figure 5.)
Again use the CVPS, so r = m. The level O input space has dimension n; let k = 2n. The 2n
numbers defining the level 1 input space are the n coordinates of a level 0 question (like the input

components oB;,) together with the n input coordinates of the vector connecting the nearest

neighbor of that question amongst the level O learning set (like the nearest neighbor amongst the

8,1) to the question itself. Our single generalizer G doesn’t in any way contribute to the level 1

input space values. Rather G comes in, indirectly, in the level 1 space outputs; the output compo-
nent of a point in the level 1 space is the error (or estimate thereof, as the case might be) of G when
trying to guess what output corresponds to the associated level 0 question. For example, in forming

the level 1 learning set we set the output value corresponding to a particular pajtiéf to
be {G(®;,; input component d;,) - (the output component 6f,)}. To make a guess as to what

output should correspond to the question q, after we've constructed the level 1 learning set we train
G with all of @, ask it g, and store the resultant guess; call it y. Now we feed q, together with the
level O input space vector connecting q to its nearest neighbor arfpirgstthe level 1 space as

level 1 input coordinates. Generalizing in this level 1 space, we get a guess for what level 1 output
should correspond to this level 1 question, i.e., we get an estimate for the difference between y and
the correct guess. Now subtract half of this error estimate from y to get the number which is our
final guess as to what output should correspond to the original question q.

In this procedure we multiply by the constant one half just to be conservative. Note that this
multiplicative constant gives us a knob determining how much we’re using stacked generalization.
When the constant equals 0, our guessing is equivalent to using the level 0 generalizer straight. As
the value of this constant is increased, our guessing becomes more and more stacked-generaliza-
tion-based.

Intuitively, this implementation of stacked generalization with a single generalizer is a
means of estimating the actual error (not just the average value of the errors) of the provided gen-

eralizer when presented with a particular question and a particular learning set. It works by first

15

seeing how the generalizer errs when taught with only part of the learning set and asked a question
in the remainder of the learning set; this information then serves as the level 1 learning set, and the
level 1 generalizer generalizes from this information to make an estimate for the error when the
original level 0 generalizer is taught with the entire level O learning set. This error estimate (or more
usually a fraction of it) is then subtracted from the level 0 generalizer’'s guess to arrive at an im-
proved guess.

The information we send into the level 1 input space determines how our error estimates
are allowed to vary. In the example given above, in addition to depending strongly on the level O
question, we're assuming that the errors of the level O generalizer are strongly dependent on the
nearest neighbor of that question amongst the elements of the learning set. The rationale is that
varying the nearest neighbor of the question often has a pronounced affect on the generalization
accuracy of the level 0 generalizer, especially if that level O generalizer is something like a local
surface-fitter.

It's interesting to note that a special case of single generalizer stacked generalization is ex-
actly equivalent to running the level 1 generalizer by itself. Have the level 1 input values be simply

the level O question (or input componen®pf, as the case might be). Furthermore, have the level

1 outputs be the level 0 outputs (i.e., have the transformation taking the output component of the

85 to the output components of the level 1 space be the identity mapping). Note that no level 0

generalizer is being used. In fact, this entire stacked generalizer structure is exactly equivalent to
running the level 1 generalizer by itself directly on the level O learning set and level O question.

Therefore, just as stacked generalization corresponds to an extension of cross-validation when one
has multiple generalizers, so when one has only a single generalizer stacked generalization corre-

sponds to an extension of using that generalizer directly by itself.

. EXPERIMENTAL TESTSOF STACKED GENERALIZATION

16

This section reports the results of two numerical experiments which indicate that stacked
generalization does indeed improve generalization accuracy. These experiments are relatively con-
trolled, "toy" problems. The idea is to use them as pedagogical and heuristic tools, much like the
toy problems used in (Rumelhart and McClelland 1986). It should be noted, however, that there
appears to be little (if any) degradation of performance of stacked generalization when it is instead
applied to messy, real-world problems. For example, Gustafson et al. have reported that (what

amounts to) stacked generalization beats back-propagation for some hydrodynamics problems

(Gustafson et al. 1996)Similarly, a number of researchers have reported on the efficacy of simply
averaging a set of generalizers, for example for aspects of the problem of predicting protein struc-
ture (Schulz et al. 1974). He Xiandong has reported on the efficacy of (what amounts to) using

stacked generalization with a variant of a GMDH partition set together and a radial basis function

generalizer for time-series prediction (Xiangdong and Zhaoxuan ?ggﬁally, work in progress

with Alan Lapedes and Rob Farber suggests that using stacked generalization to combine ID3, per-
ceptrons, and the author’'s metric-based HERBIE (Wolpert 1990b) for the problem of predicting
splice junctions in DNA sequences gives accuracy better than any of the techniques by itself (i.e.,
preliminary evidence indicates that this implementation of stacked generalization is the best known

generalization method for this problem).

i) Experiment one

The simpler of the two numerical experiments involved using stacked generalization to im-
prove the performance of a single generalizer. The level O input space for this experiment was one-
dimensional. The problem was explicitly one of surface-fitting; the parent functions were simple
high-school-math-type functions, and the level O generalizer was "linearly connect the dots of the
learning set to make an input-output surface which then serves as a guess for the parent function”,
i.e., the local linear technique of Farmer and Sidorowich (1988). (See figure 5 for an illustration of
this level O generalizer.)

In this experiment the stacked generalization architecture was exactly the same as in the ex-

17

ample at the end of section | on how to augment the performance of a single generalizer (see figure
2). n equals 1 for this problem, so the level 1 input space was 2-dimensional. The level 1 generalizer
was the metric-based HERBIE described in (Wolpert 1990b, Wolpert 1990c). It works by returning

a normalized weighted sum of the outputs of the p nearest neighbors of the question amongst the
learning set. Here p was 3, and the weighting factor for each of the 3 nearest neighbors was the
reciprocal of the distance between that neighbor and the question. "Normalization" means that the

3
weighted sum was divided by the sum of the weighting factors: guesﬁizl{yi / d(q,)f)} /{

3
> 1 1/d(q,)}, where q is the question, xx,, and % are the input components of the three
1=

nearest neighbors of g in the learning sgtyy, and y; are the corresponding outputs, and d(., .)

IS a metric, here taken to be the Euclidean metric. (When the input space is symbolic, it is conven-

tional to use a Hamming metric rather than a Euclidean metric. See(Wolpert 1990b).) This metric-

based HERBIE is one of the simplest generalizers the@lar&ddition, along with (for example)
Farmer’s local linear technique, metric-based HERBIES necessarily always reproduce their learn-
ing set exactly (see (Wolpert 1990b) and (Wolpert 1990c)). The parameters of this use of stacked
generalization (e.g., .5, 3) were chosen in an ad hoc manner; presumably cross-validation could be
used to get better values.

In the first phase of the experiment stacked generalization was run 1,000 times. Each time
a new 3rd order polynomial was created, all four of whose coefficients were chosen randomly from
the interval [-2.0, 2.0]. (Here and elsewhere "random" means i.i.d. with a flat sampling distribu-
tion.) For each such polynomial parent function a 100-point learning set was chosen randomly, and
then a separate 100-point testing set of input space values was chosen randomly. Both sets had their
input space values restricted to the interval [-10.0, 10.0]. The learning set was then used to "train"
the stacked generalization structure described above, and the errors when using that structure to
guess the outputs of the elements of the testing set were recorded and compared to the errors of the

level O generalizer run by itself with no level-1 post-processing. The average of the difference

18

{(square of the error for the level O generalizer run by itself) - (square of the error for the stacked
generalizer)} equalled 81.49. The estimated error in this average was +/- 10.34, i.e. stacked gener-
alization improved the generalization with a confidence of 8 standard deviations.

The magnitudes of the guessing errors, both for the level 0 generalizer run straight and for
the stacked generalization structure, ranged over many orders of magnitude, so the number "81.49"
isn’t particularly meaningful. Ratios of error magnitudes can be misleading, but they do have the
advantage that (unlike simple differences of error magnitudes) they aren’t skewed by such loga-
rithmically broad distributions. The average of the ratio {(square of the error for the level 0 gener-
alizer run by itself) / (square of the error for the stacked generalizer)} equalled 1.929. The estimat-
ed error in this average was +/- .0243; using stacked generalization improved the generalization by
a factor of 2, on average.

The same problem was first investigated for parent functions which were polynomials only

of order 2. The level 1 input space consisted of the two nurabensi3, wherea = (q - x), B =
(d - %), g is the question, and and % are the two elements of the learning set used to make the

local linear guess (i.e., they’re the nearest neighbor of g, and the next nearest neighbor which lives
on the opposite side of q from that first nearest neighbor.) For this scenario the average of the ratio
of the error magnitudes ranged up to 50 (!), depending on the precise parameters used.

It's not hard to understand this behavior. For polynomials of order two it turns out that the
error of the local linear technique is independent of the question. In fact, up to an overall propor-
tionality constant, it's given exactly lyf3. For this scenario, the level 1 generalizer only has to
learn the simple surface {output = a constant times the product of the 2 input coordinates}, i.e., a
paraboloid, a two-dimensional version of the original parent surface. Let the cardinality of the level
0 learning set be m, and let the range of the input values in that learning set be z. The density in the
input space of the elements of the level 0 learning set is ~ m/z. This means that the waares of

[3 are ~ z/m. Since there are m such values in the level 1 learning set, the density in the input space

of the elements of the level 1 learning set~m/ (%h:nom?’)/(zz) ~ (mz)/z (under the assumption

19

m z). Since these level 1 points lie on the two-dimensional version of the level O parent surface,
the stacking of the generalizer has effectively alowed us to run the original generalizer over a
learning set chosen from the original surface, but with a density m times that of the original level
0 learning set. We have a"multiplier effect”.

Asanother way of understanding the exceptional behavior for order two polynomial parent
surfaces, let the average output space magnitude of the pointsin the level 0 learning set be s, and
let rsbe the average error of the level O generalizer run straight. r measures the efficacy of the gen-
eralizer, and will in general be below 1, fairly close to 0. The average output space magnitude of
the pointsin the level 1 learning set isrs. Since these points lie on the "same" surface as the points
of the level 0 learning set, if the same generalizer is used we would expect an average error of the

25 << rs. Just asin the argument of the preceding

guessesin thelevel 1 spacetobe~r x (rs) =r
paragraph, this output space argument says that for polynomials of order two, using alevel 1 gen-
eralizer with inputs o and 3 resultsin a"multiplier effect” diminishing the average guessing error
polynomially.

In addition to polynomials, simple transcendental parent functions were also investigated.

Thelevel 1 input space was again two-dimensional, the input coordinates were again g and q - x4,

and the error estimate made by the level 1 generalizer was again multiplied by .5. Random con-
stants were again chosen from [-2.0, 2.0], the level 0 inputs were again chosen from [-10.0, 10.0],
and again 1,000 runs of random 100-point learning sets and random 100-point testing setswere in-
vestigated. The samelevel 0 and level 1 generalizerswere used asin the polynomial tests. The par-
ent functions were a sum of two sine waves and two exponentia functions. The amplitudes of all
four functions were determined by the random constants, as were the phases of the two sine waves
(thereby introducing cosines) and the frequencies of the two exponentials. The frequencies of the
two sine waves were .1 and .2, and the sine function used interpreted its arguments as being in ra-
dians.

The average of the difference { (square of the error for the level O generalizer run by itself)

- (square of the error for the stacked generalizer)} equalled .0078. The estimated error in this av-

20

erage was +/- .0011, i.e. stacked generalization again improved the generalization with a confi-
dence of 8 standard deviations. The average of the ratio {(square of the error for the level O gener-
alizer run by itself) / (square of the error for stacked generalizer)} equalled 2.022. The error in this
average was +/- .0318; using stacked generalization again improved the generalization by a factor
of 2, on average.

These results are not intended to constitute the definitive investigation of how to use
stacked generalization to improve the accuracy of the local linear generalizing technique. Many
variations of the schemes outlined here could be investigated (involving, for example, different
level 1 generalizers, different values of parameters, different mappings from partitions to a level 1
space, different dimensionalities of the level 1 input space, etc.) Rather these results are simply in-
tended to indicate that stacked generalization does indeed improve the generalization of the local
linear technique, at least for the smooth and non-volatile parent functions investigated here.

Nonetheless, it is worth commenting on how one might choose amongst the variations of
this scheme in an algorithmic manner. One obvious way to do this would be to use cross-validation.
If the cross-validation is run on the level 1 learning set, then only the parameters dealing with the
level 1 generalizer are being varied. The parameters dealing with how to construct the level 1 space
(for example) are fixed. Under this scheme we’re trying to estimate generalization accuracy in the
level 1 space and then use that information to improve the entire structure’s generalization of the
level O learning set. This scheme is equivalent to simply introducing another level (level 2) to the
stacking of the generalizers. There is another way to run the cross-validation however; treat the en-
tire stacked generalization process as a generalizer of the level O learning set, with a different gen-
eralizer corresponding to each different set of parameter values. (Under this scheme we’re exam-
ining all parameters, including, for example, those dealing with how to map from the level O space
to the level 1 space.) Now run cross-validation dlatset of generalizers. This way we’re using
the cross-validation to directly estimate generalization accuracy in the level 0 space, which is, after
all, what we’re ultimately interested in. With this second scheme, the output information going into

the level 2 learning set is coming from the level O learning set, not the level 1 learning set.

21

i) Experiment two

The other numerical experiment was based on the NETtalk "reading aloud" problem. The
parent function for this problem has 7 (suitably encoded) letters as input. The output of the parent
function isthe phoneme that would be voiced by an English speaker upon encountering the middie
letter if all 7 letters had occurred in the midst of some text which the speaker was reading aloud.
(See (Stanfill and Waltz 1986, Wolpert 1990b, Carterette and Jones 1974, Sejnowski and Rosen-
berg 1988).) The data set used for the experiment reported here was standard Carterette and Jones
(1974), modified (asin (Wolpert 1990b)) to force consistency amongst the several speakersrecord-
ed.

In both (Wolpert 1990b) and (Sejnowski and Rosenberg 1988) generalizers never guess di-
rectly from 7-letter fields to phonemes. Rather each possible phoneme is decomposed into a vector
in a 21-dimensional space (the components of which relate to the physical process of speech).
Therefore NETtalk, for example, isaneural net which takes (a suitable encoding of) a 7-letter input
field asitsinput, and guesses avector in a21-dimensional space. Thisvector guessisthen convert-
ed into a phoneme guess by finding the legal phoneme vector making the smallest angle (in the 21-
dimensional space) with the guessed vector. To use metric-based HERBIES for this problem (asin
(Wolpert 1990b)), 21 such HERBIEs have to be used, one for each component of the phoneme vec-
tor space. Aswith the output neurons of NETtalk, the guesses of these 21 metric-based HERBIEs
are then passed through a post-processor which combines them to form a 21-dimensiona guess,
which in turn specifies a phoneme guess. Unless otherwise specified, in the rest of this section,
whenever the term "metric-based HERBIE" is used, what isreally meant is a set of 21 such HER-
BIEs combining in the manner discussed here to guess alegal phoneme.

Several separate generalizers were combined in the exact same manner as in the example
in section |. Each such level O generalizer was ametric-based HERBIE, where 4 nearest neighbors

were used. Each of these level O generalizers looked exclusively at a different one of the 7 input

22

7
letter slots, i.e., for each of them instead of using the full Hamming meiriq)dt 2. 1(1 -3(p;,
1=

d;)), the metric dg, g) =1 -3(py., qj)) for some fixed value of k was used. The level 0 generalizers

differed from each other in which letter slot they looked at, i.e., they used different k's. (Effective-
ly, this means that each of the level O generalizers had a different one-dimensional input space rath-
er than a seven-dimensional one, since only variations in the k’th slot had any effect on the guess-
ing of the corresponding generalizer).

Three level 0 generalizers were used; the first looked exclusively at the 3rd letter slot of the
7 letter input field, the second looked exclusively at the 4th letter slot, and the third looked exclu-
sively at the 5th letter slot. As in the example in section I, the CVPS was used, the guesses of the
level 0 generalizers formed the inputs of the level 1 space, and the outputs of the level 0 and level
1 spaces were identical (i.e., the level 1 output space wasn’t an error space). Although it might help
the level 1 generalizer if the 21-dimensional output vectors of the level O generalizer were fed into
the level 1 input space, for simplicity the full level O generalizers were used instead and a single
integer representing the closest phoneme to the 21-dimensional vector was fed into the level 1 input
space. In other words, level 1 inputs were symbolic and not real-valued. The level 1 generalizer
was a metric-based HERBIE using a full Hamming metric over the 3-dimensional level 1 input
space. (As usual, there were in fact 21 such HERBIEs, making a 21-dimensional guess which in
turn specified the phoneme guessed by the entire stacked generalizer.)

The (level 0) learning set was made by looking at successive 7-letter windows of the first
1024 words of Carterette and Jones, i.e., it consisted of KBp46 = 5114 elements. The testing
set was constructed from the successive 7-letter windows of the next 439 words of Carterette and
Jones, i.e., it consisted of (48%) - 6 = 2189 elements The three level O generalizers got a total
of 507, 1520, and 540 correct, respectively, on the testing set. Since each guess was either correct
or incorrect, these numbers suffice to determine exactly the expected error in the associated esti-
mates of the average guessing accuracies: generalizer 1 had an average generalizing accuracy of

23% +/- .90%, generalizer 2 had an average generalizing accuracy of 69% +/- .98%, and general-

23

izer 3 had an average accuracy of 25%+/- .92%. As one would expect, generalizer 2, looking at the
middle letter of the input field, guesses best what phoneme should correspond to that middle letter.

The stacked generalizer got 1926 correct, for an average accuracy of 88% +/- .69%. Cross-
validation (i.e., a level 1 generalizer which worked by globally fitting a surface of the form {level
1 output = one of the level 1 inputs}), would have chosen generalizer 2. Therefore the improvement
over cross-validation which resulted from using a better level 1 generalizer was approximately 20
(of generalizer 2’s) standard deviations. As in the surface-fitting experiment presented earlier, pre-
sumably one could construct a stacked generalizer for the text-to-phoneme problem which per-
formed better than the one presented here. This would be done by varying the parameters of the
stacked generalizer, perhaps using a different level 1 generalizer, etc.

The purpose of this text-to-phoneme experiment wasn'’t to beat the performance (reported
in (Wolpert 1990b)) of a metric-based HERBIE having access to all 7 input letters, nor even to beat
the performance of back-propagation (i.e., NETtalk) on this data. Rather it was to test stacked gen-
eralization, and in particular to test whether stacked generalization can be used to combine separate
pieces of incomplete input information. Since some of the letter slots are more important than oth-
ers for determining the correct phoneme output, this experiment demonstrates stacked generaliza-
tion’s ability to distinguish between (and properly exploit) relevant and (relatively) irrelevant level

0 input information.

1. DISCUSSION OF STACKED GENERALIZATION

There are a number of subtle issues involved with stacked generalization. This section is an
introduction to some of them. First two potential shortcomings of stacked generalization are ad-
dressed, then a heuristic discussion on the behavior of stacked generalization is presented, and then

extensions and variations of the technique are discussed.

24

i) Multi-valuedness and lear ning set reproduction
Consider the first example given in section | of how to use stacked generalization, the one

involving a set of several {J(ﬁ The whole process outlined in that example is itself a generalizer;

it takes (level 0) learning sets and (level 0) questions and maps them to guesses. Therefore it's sen-
sible to ask how the whole process agrees with the theoretical properties which are often required
of individual level O generalizers.

One of the first things one notices is that it's possible for the level 1 learning set to be multi-
valued, i.e., the level 1 learning set might contain a pair of points with identical input components
but different output components. This is because there might be two (or more) partitions in the par-

tition set which result in the same guesses by all of tijq}ee{(&n though they have differedi’s.

In practice this occurs very rarely, especially if the data takes on a continuum of values. Moreover,
unless the level 1 generalizer tries so hard to reproduce its learning set that it can’t deal gracefully
with such multi-valuedness, this multi-valuedness is not, of itself, a reason for concern. And even
if the level 1 generalizer does have a marked lack of grace under such conditions, if the level 1 input

space is enlarged to include the level O question (or input space projeéiignasfthe case might

be), then the level 1 learning set will now be single-valued and no problems will arise.

Another example of a peculiar property of stacked generalization concerns the issue of re-
producing the level 0 learning set. Most conventional generalizers either always reproduce their
learning set or strive to do so. However this isn’'t necessarily the case with the whole process of
stacked generalization (viewed as a generalizer of the level O learning set), regardless of whether
or not the constituent level 0 and level 1 generalizers necessarily reproduce their learning sets. This
lack of reproducing the learning set might not be a problem. For example, when one has noisy data,
exact reproduction of the learning set is rarely desirable. (Indeed, the behavior of a stacked gener-
alizer when one has large learning sets can perhaps be used as means of determining whether or

not one’s data is noisy.) And for non-noisy data, it should often be the case that if the learning set

25

is large enough, then the learningiseeproduced, to a good approximation.

Nonetheless, there are many cases where one would like to enforce exact reproduction of
the learning set. There are several ways to achieve this. The most obvious is to simply place a filter
on the questions being fed to the stacked generalizer: if a level 0 question already exists in the (level
0) learning set, bypass the generalizers and answer that question directly from the learning set. (Af-
ter all, the purpose of stacked generalization is to improve guessing for questions outside of the
learning set, not to provide a complicated means of implementing the look-up-table "if the question
is in the input projection of the learning set, guess the corresponding output".)

A more elegant scheme has been devised by Gustafson et al. (1990): require that the level

1 surface guessed by the level 1 generalizer contains tlreesliménerea runs over the reals aed

is a diagonal vector, that is a vectoRK*1 all k+1 of whose coordinate projections are identical

and non-zero (k being the dimensionality of the level 1 input space). Under this scheme, so long as
the level O generalizers all reproduce the level O learning set, then so will the entire stacked gener-
alizer. The reason is that if the level 0 question is contained in the level O learning set, then all the
level O generalizers will make the same guess (namely the output component of the corresponding
element of the level O learning set), and then this level 1 generalizer will also make that guess.

There are other ways to ensure reproduction of the learning set which don’t restrict the level

1 generalizer. For example, one could, so to spgeath) the level 1 generalizer to reproduce the

level O learning set. To do this, for every @gtdon’t simply create the single element of the level

1 learning set corresponding@& =0 - eil' Rather for eacﬁil create m points in the level 1
space, one for all m possible value$gf (i.e., allow®;, to range over ab rather than just over

6 - 6;1). Modulo any issues of multi-valuedness of the level 1 learning set, so long as the individ-

ual level 0 and level 1 generalizers reprodihedr learning sets, then under this scheme so will the
entire stacked generalizer.
There are many other criteria one might require of a generalizer in addition to reproduction

of the learning set. For example, one might require that the generalizer be invariant under Euclid-

26

ean symmetry operations in the level 0 space rRN*1 (see (Wolpert 1990c)). In practice, although
many of the generalizers commonly used reproduce learning sets, few meet these additional gen-
eralization criteria (despite the reasonableness of these criteria). The result is that modifying
stacked generalization to necessarily obey these criteriais a non-trivial exercise, since in practice
the constituent generalizers will often violate them. A full discussion of thisand related issues con-

cerning stacked generalization and generalization criteriais beyond the scope of this paper.

i) Heuristics concer ning the behavior of stacked generalization

Thissub-sectionisacursory heuristic examination of those properties of theindividual lev-
el 0 and level 1 generalizers which have particularly pronounced effects on the efficacy of stacked
generalization.

Many generalizers are explicitly local, meaning the guess they make is overtly dependent
in avery strong manner on the nearest neighbors of the question in the learning set. Many other
generalizers, while not explicitly local, act locally. For example, back-propagation behaves some-
what locally (see (Lapedes and Farber 1988) and the discussion in (Wolpert 1990€e) on using back-
propagation to try to generalize the parity input-output function).

Care must be taken whenever oneisusing such alocal generalizer with aCVPS, especially
when one is using that generalizer by itself (i.e., when that generalizer isthe only level O general-

izer). Thereason isthat for several of thei values, the element 6,5 = 8 - 6,4 is one of the elements

of 8 which lie closest to the level 0 question. Therefore in trying to determine and correct for the
biases the level O generalizer will have when generalizing with the full learning set 6, training is
being done on learning sets with different nearby elements from the nearby elements in the full
learning set. However the generalizing of the local generalizer is strongly dependent on the set of
nearby elements of the learning set, by hypothesis. Accordingly, the information in the level 1
learning set can be extremely misleading in how it implies the level O generalizer will err when
answering the level 0 question viathe full level O learning set.

The natural way to get around this problem isto have the level 1 input space contain infor-

27

mation on the nearby elements of level O learning set. That way the dependence on the nearby el-
ements of the learning set is being learned. This is exactly the strategy that was followed in the ex-
ample in section | and the first experiment in section II.

There exist other situations where care must be exercised in using stacked generalization.
For example, when the level 1 inputs are given by the outputs of the level 0 generalizers (as in the
first example in section I), poor choice of the level 1 generalizer can actually result in generaliza-
tion performance worse than that of the level 0 generalizers run by themselves. A full characteriza-
tion of the desirable traits of level 1 generalizers for this situation isn’t yet in hand, but some broad
observations can be made. In this context, when the level 1 generalizer is explicitly a surface-fitter,
best behavior accrues (usually) when that generalizer is relatively global, non-volatile and smooth,
and not overly concerned with exact reproduction of the level 1 learning set. For example, in the
ongoing work with Lapedes and Farber mentioned at the beginning of section I, the level 1 input
space is only 3-dimensional. Nonetheless, the best level 1 generalizers found so far operate by per-
forming what is essentially a uniformly weighted average over selendted of the nearest
neighbors of the level 1 question. An even more extreme example is any use of stacked generali-
zation where the level 1 generalizer is a global hyperplane fitter (e.g. cross-validation).

The following simplistic analysis shows why it's reasonable that "relatively global, smooth
..." level 1 generalizers should perform well. Imagine we have a single level O generalizer, G, and
the level 1 input space is the guess of G. The level 1 outputs are the same as the level O outputs.
For simplicity, have both the level 0 and level 1 output spaces be discrete-valued with values {1,
2,3, ..., s}. Let the level 1 generalizer be H. Now assume that G is a fairly good generalizer for the
parent function under consideration. More precisely, assume that independent of what guess G
makes, that guess is correct exactly 70% of the time. Furthermore, assume that there is only way
that G can be fooled for a given guess, i.e., whenever G guesses a pafii¢li|&,t3, ..., s}, then

the correct guess is always either t or some other particular nupiBety2, 3, ..., s} which is

determined uniquely by t. Now look at a level 1 input space valuglx?2, 3, ..., s}. Assume there

are p > 0 points in the level 1 learning set with this input coordinate. Detin@ B(p -a) as the

28

probability thata of the p elements have output x (meaning G guessed correctlff) cfriiem
have outputy. P@, B) = (7f'@- .7j3 [p!/ (a! BY)], and is independent of the value of G’s guess

(i.e., this probability is independent of the level 1 input value x). Now because G is correct 70% of
the time, in the absence of additional information one should always guess G’s output. However if

B > a, then most level 1 generalizers presented with the question x would Quasslsar than x.

(This is especially true @ = 0, in which case there’s no evidence at all that one should guess any-

thing other than ywhen presented with x.) Assume H has this behavior. Then if p is small for all

level 1 input space projections of the level 1 learning seat,[FP$ a) is sizable for all those pro-
jections of the level 1 learning set. As a result it is likely that a relatively large fraction of those
level 1 learning set input space projections Hawen, i.e., a relatively large fraction of the times

H is presented with a question which exists in the level 1 learning set that learning set will lead H

to guess y rather than G’s guess, x. Therefore using stacked generalization with G feeding the lev-

el 1 generalizer H will lead to worse guesses than simply using G directly, on average.

This type of problem can occur even if the level 1 input space is multi-dimensional. One
simple way around it is to modify H to implicitly estimate G’s overall guessing accuracy and then
make use of this estimate. To make such an estimate, the level 1 generalizer must examine a large
number of the elements of the level 1 learning set and run a cross-validation-type procedure over
them (i.e., measure the fit of the hyperplane {output = G’s guess} over those elements). Preferably,
these examined elements are nearby elements of the level 1 question x, so we don’t have to worry
about the fact that in general G’s guessing accuracy might depend on the value of G’s guess (unlike
in the toy example above). Putting these requirements together, we get level 1 generalizers which
are "relatively global, non-volatile and smooth, and not overly concerned with exact reproduction
of the level 1 learning set". Such level 1 generalizers can be viewed as systems which, in effect,
boosta (i.e., the number of times G is observed to be right)Bagie., the number of times G is
observed to be wrong) by examining many nearby elements of the level 1 learning setawdth

3 boosted in this way, B(3 > a) becomes small, and our problem is rectified.

29

Generically, when the level 1 inputs are given by the outputs of the level 0 generalizers, one
wants those generalizers to (loosely speaking) "span the space of generalizers" and be "mutually
orthogonal” in that space. For exampieagine we have two level O generalizers, A and B, whose
guesses directly give us the level 1 inputs (see figure 3). Say A is a good generalizer for the parent
function, whereas B is not a particularly good generalizer for that function. Then the only possible
advantage of using B along with A in a stacked generalization structure is if B adds information
not provided by A, i.e., if the correlation between a correct output and the pair {A’s guess, B’s
guess} is greater than the correlation between a correct output and the singlet {A’s guess}. If this
isn't the case, then B will simply be a red herring, whose guess is redundant with A’s (at best). It
is for these kinds of reasons that the level 0 generalizers should be "mutually orthogonal".

Similar reasoning justifies the statement that one wants the level 1 generalizers to "span the
space”. It is usually desirable that the level O generalizers are of all "types”, and not just simple
variations of one another (e.g., we want surface-fitters, Turing-machine builders, statistical extrap-
olators, etc., etc.). In this way all possible ways of examining the learning set and trying to extrap-
olate from it are being exploited. This is part of what is meant by saying that the level O generalizers
should "span the space". Such spanning is important because stacked generalization isn't just a way
of determining which level 0 generalizer works best (as in cross-validation), nor even which linear
combination of them works best (as in Gustafson et al.’s scheme); rather stacked generalization is
a means of non-linearly combining generalizers to make a new generalizer, to try to optimally in-
tegrate what each of the original generalizers has to say about the learning set. The more each gen-
eralizer has to say (which isn't duplicated in what the other generalizer’'s have to say), the better
the resultant stacked generalization.

Another aspect of what "span the space" means is made clear from the discussion at the
very beginning of this sub-section concerning the heuristics of stacked generalization with a single,
local generalizer: we would like the output values of the level O generalizers to give us all the sa-
lient information concerning the nearby elements in the level O learning set. These generalizers

should collectively tell us all that's important about the level O learning set, since otherwise the

30

mapping from the level 0 space to the level 1 space has involved a loss of important information.
Stacked generalization is often nothing more than applying a non-linear transformation to

the elements of the learning set before generalizing from them (with the level 1 generalizer). (

The non-linear transformation is determined by what level O generalizers are used, how they map

to the level 1 space, etc.) Saying that the generalizers should be "mutually orthogonal and span the

space" essentially means that on the one hand that non-linear transformation should preserve all

the important information in the learning set, while at the same time, it sShapdeserve the re-

dundant and irrelevant information in the mapping from the level O space to the level 1 space.

i) Extensions and variations

There are many interesting implementations of the basic idea of stacked generalization.
First, note that the idea of having the level 1 output be an error estimate of a level O generalizer G
can be applied even when there are other level 0 generalizers in addition to G, all feeding into the
level 1 input space. In this case the outputs of the other generalizers are now providing us with in-
formation concerning the likely error of G when generalizing fBoriihere are a number of ad-
vantages to such schemes where the level 1 output isn’t interpreted as a guess but rather as an es-
timate of the error in a guess. For example, with such a scheme the dimensionality of the level 1
input space can be reduced by one without losing any information. (G need no longer feed into the
level 1 space to get information concerning G’s guess - that information comes in when we subtract
the estimated error from G’s guess.) Moreover, this scheme allows us to be "conservative"; we can
multiply the error estimate by a fraction before subtracting it from G’s guess. In this way we can
directly control a parameter (the multiplicative fraction) which determines to what extent we use
stacked generalization and to what extent we simply use G by itself.

As another interesting implementation, since a stacked generalization structure is itself a

generalizer, the whole thing can be stacked, and these stackings can be combined into a network

structure! All the usual net games (e.g. back-propagation) can then be applied to this network

structure. Another interesting variation is to have the level O generalizers all be similar, relatively

31

dumb systems An example of such a system is the following generalizer: "guess the output value
of the point in the learning set whose input component lies closest to the vector sum of some fixed
input space vector with the question”. Different level O generalizers have a different "fixed input
space vector". (If that "'fixed input space vector" = 0, then we recover the traditional nearest neigh-
bor generalizer.) Non-linear time-series analysis, with its "delay embedding" (Farmer and Sidor-

owich 1988, Casdagli 1989), is an example of such a use of stacked generalization with a set of

similar, dumb, level O generalize@sOther examples of this kind of implementation of stacked

generalization are fan generalizers (Wolpert 1990e), the extension of non-linear time-series analy-

sis to multiple input dimensiors.

Other variations are interesting as tools for theoretical investigations of stacked generaliza-
tion. For example, let N, the number of generalizers, equal n, the dimension of the level O input
space, and also use a partition set in which r = m. Use multiple stacking and have the level k space’s
inputs be the outputs of the N level (k - 1) generalizers, exactly as in the example in section | (where

k = 1). For this implementation of stacked generalization, when producing the learning set one lev-

el above it, any generalizerg matter what level it's working e#duces to a single unique function

9m-1- taking as argument an n-dimensional question and an (m - 1)-element learning sets whose

input space is n-dimensional. As a result, we can explicitly analyze the behavior of the whole sys-
tem as more and more stacking levels are added. For example, we can consider the case where each
level has a single learning set, and all such learning sets feed serially into the set one level above,
all according to the exact same rules. (Such a structure is a multi-layer net, where each node is a
learning set, there exists one node per layer, and information is fed from one node to the next via

the N generalizers.) For such a scenario the successive levels act upon the learning set like succes

sive iterations of an iterated map. Therefore the usual non-linear analysis questions apply: when
does one get periodic behavior? when does one get chaotic behavior? what are the dimensions of
the attractors? etc. Once answered, such questions would presumably help determine how many

levels to stack such a system.

32

Yet another interesting theoretical scenario arises when not only can all the mappings from

one learning set to the next be reduced to a single fungfiop gut so can the guessing for ques-

tions outside of the learning set(s). This full reduction usually doesn’t obtain due to the fact that

the cardinality o®;, is less than the cardinality of the féll and therefore a questi@h6 goes
through a different g thah}, (91, vs. gy,_1)- (The same conundrum arises when trying to provide

theoretical justifications for techniques like cross-validation.) One obvious way around this diffi-

culty is to have g, fixed by g,,_4. For example, one could defing,@; 9) = < ¢,_1(8;1;)
>{i} , where theb,; are chosen from the CVPS@f(The averaging can either be done with a uni-
form weighting over all m numbers m39(6i1: d), or those numbers might be weighted ac-
cording to the error valueJg4(8;1; input component d;,) - (output component d5)|.) In this

way an analysis of the generalizing behavior of stacked generalization and its relation to the con-
stituent generalizers could be cast in terms of the behavior of a single function.

Finally, it's interesting to note that some authors have investigated what amounts to stacked
generalization in the context of improving learning (i.e., improving reproduction of the learning

set) rather than improving generalization. In such a corigxtan be allowed to run over the en-

tire learning set. An example of such a scheme is investigated in (Deppisch et al. 1990). The level
1 generalizer used in(Deppisch et al. 1990) is back-propagation on standard feed-forward neural
nets, and the level 1 output space is the error of the level 0 generalizer. The level 1 input space is
identical to the level 0 input space. The level O generalizer is also back-propagation on standard
feed-forward neural nets, only restricted to have a non-zero resolution in its output. Evidence is
presented in (Deppisch et al. 1990) indicating that this scheme achieves much lower learning error
than a single back-propagation generalizer, and does so in much less time.
It should be noted however that although a partition set of the type implicitly used in (Dep-

pisch et al. 1990) might help learning, it entails some major disadvantages as far as generalization

is concerned. For example, if this partition set is used when there is no noise, and if one of the level

33

0 generalizers guesses perfectly for questions on which it has been trained, then, asfar asthe level
1 generalizer cantell, that level O surface-fitter always guesses perfectly for all questions. Accord-
ingly, any reasonablelevel 1 generalizer will simply say that one should usethat level O generalizer
directly, and ignore any other level O information. In general, when using this partition set oneis
not "generalizing how to generalize" but rather "generalizing how to learn”, in that thelevel 1 space
contains information on how well the level 0 generalizerslearn, but not on how well they gener-

alize.

CONCLUSION

Stacked generalization is a generic term referring to any scheme for feeding information
from one set of generalizers to another before forming the final guess. The distinguishing feature
of stacked generalization isthat the information fed up the net of generalizers comesfrom multiple
partitionings of the original learning set, al of which split up that learning set into two subsets.
Each such pair of subsetsis then used to glean information about the biases of the generalizing be-
havior of the original generalizer(s) with respect to the learning set. (Note that thisis not the same
as the biases of the learning behavior of the original generalizer(s).) It is this bias information
whichisfed up the net; stacked generalization isameans of estimating and correcting for the biases
of the constituent generalizer(s) with respect to the provided learning set.

Stacked generalization can be used with a single generalizer, in which case it is explicitly
a scheme for estimating and correcting the errors of that generalizer. The surface-fitting experi-
mentsreported hereindicatethat it can be quite effective at correcting those errors. When used with
multiple generalizers al of which feed into a single back-end generalizer, certain special cases of
stacked generalization are exactly equivalent to cross-validation, certain are exactly equivalent to
forming a linear combination of the guesses of the constituent generalizers, etc. All such special

cases correspond to the assumption of a particular (invariably rather dumb) back-end generalizer.

34

Aswith any other generalizing problem, use of more sophisticated generalizers should be expected
to give improved results. This is indeed the case, according to the NETtalk-type experiments re-
ported here and according to other experiments reported elsewhere. The conclusion is that for
many generalization problems stacked generalization can be expected to reduce the generalization

error rate.

FOOTNOTES

[1] Strictly speaking, the amount of information in the learning set ~ the number of bits defin-
ing the set of parent functions consistent with that learning set (see (Anshelevich et al. 1989)). The
extrainformation implicit in stacked generalization comes from the assumption that in-sample/out-
of-sample techniques are accurate indicators of generalization behavior for the entire learning set.
This assumption is implicit in most non-parametric statistics techniques (e.g. the non-parametric

statistics techniques discussed below).

[2] There are no guarantees, of course. Some non-cross-validation schemes for choosing
amongst a set of generalizers (e.g. parsimony, or even random choice) will in certain circumstances
result in choosing a generalizer which has a lower generalization error rate than the generalizer
chosen by cross-validation. Similarly, in certain circumstances some scheme other than stacked

generalization (e.g., just using one of {Gj} straight, by itself) will outperform stacked generaliza-

tion. Thisnon-universality isinevitable, and holds for any generalizing scheme whatsoevey, due to

thefact that guessing a parent function based on only afinite number of samplesof itisanill-posed

problem in the Hadamard sense (see (Morozov 1984)).

35

[3] In addition to stacked generalization, there are other ways of embedding the central idea
of cross-validation in a more sophisticated framework. One such is to not use the cross-validation
error simply as a means for choosing amongst a set of generalizers. Rather one constructs a gener-
alizer from scratch, requiring it to have zero cross-validation error. (To make the construction
unique, one must impose other constraints as well - see (Wolpert 1990d).) Instead of coming up
with a set of generalizers and then observing their behavior, one takes the more enlightened ap-
proach of specifying the desired behavior first, and then solving the inverse problem of calculating
the generalizer with that desired behavior. This approach is called "self-guessing”. It is similar in
spirit to regularization theory, except that here (loosely speaking) the regularization is being done

over the space of generalizers as opposed to the space of input-output functions.

[4] Although Gustafson et al. don’t view it in those terms, their scheme is essentially the same
as cross-validation, except that instead of finding a single best generalizer, they're finding the best
(restricted) linear combination of generalizers, using a CVPS to determine that combination. In the
language of stacked generalization, their scheme is using a CVPS along with a level 1 input space
consisting of the outputs of the level 0 generalizers. The level 1 output space is the correct outputs
from the level O space, and the level 1 generalizer is a restricted global hyperplane fitter. (The level
0 generalizers in their scheme are variations of local hyperplane fitters.) The difference between
this scheme and straight cross-validation is that the restrictions Gustafson et al. imposes on the lev-
el 1 generalizer are more lax. They too generalize in the level 1 space by fitting with a global hy-

perplane, but they allows arbitrary hyperplanes of the BogR;, where the xare the level 1 input
space coordinates and theage arbitrary real-valued constants restricted sctlagt 1. (In con-

trast, cross-validation adds the extra restriction that all but one gftinestequal 0.)

[5] As implemented by He Xiangdong, GMDH can be viewed as using the following partition

36

set rather than the so-called "GMDH partition set”: 8;, ranges over all single pairs from 8, just as
ina CVPS, but 6,1 = 6 for all i. There are then p level O generalizers, al of which are identical

except that they use non-overlapping subsets of 0 to train themselves. (p isusually restricted to be
adivisor of m.) For example, thefirst level 0 generalizer might be a surface-fitter which only fits
an i/o surface to the group of the first m/p elements of 0, the second level 0 generalizer isthe same
surfacefitter but fitsan i/o surface to the second group of m/p elements of 8, and so on. The GMDH
scheme of He Xiangdong consists of feeding those p level 0 generalizersinto alevel 1 space and

generaizing there.

[6] More sophisticated versions of metric-based HERBIES replace a pre-fixed metric with
something lessrestrictive. For example, in the use of metric-based HERBIEs reported in (Wolpert
1990b), the input space was 7 dimensional, and each of the 7 coordinates of any input value were

scaled by adistinct weighting factor, p;, 1<i < 7, before the conventional metric was applied. The
weighting vector p; was determined by the learning set itself via cross-validation. A more general

scheme would beto use aweighting matrix rather than aweighting vector. In this scheme, one mul-
tiplies al input space vectors by the weighting matrix before applying the conventional metric.
(Use of aweighting vector isaspecial case of this scheme where the weighting matrix isdiagonal .)
Again, in practice something like cross-validation could be used to find the matrix. (Since the space
of possible matrices is so large however, rather than the trial and error approach used in (Wolpert
1990b) one would probably want to employ something like gradient descent in the space of cross-
validation error to find the "optimal" weighting matrix.) Pre-multiplying by a weighting matrix is
equivalent to linearly transforming the input space before doing the generalizing. Such atransfor-
mation allows cross-talk amongst the various input space coordinatesto occur in the determination
of distances between input space vectors. This jump from use of a weighting vector to use of a
weighting matrix in ametric-based HERBIE isloosely equivaent to the jump from using apercep-
tron (with its vector of synaptic weights) to using a feedforward neural net with a single hidden

layer (where one has matrices of synaptic weights). After al, the mapping from the input layer to

37

the hidden layer in a neural net is nothing more than a linear transformation of the original input

vectors.

[7] This is essentially what is done in (Wolpert 1990d), where a genetic evolution process is
used to create a feedback net of generalizers. (In (Wolpert 1990d), the output of this feedback net
of generalizers is fed through yet another generalizer to get the final guess. This final generalizer
has its learning set constructed so that the original level 0 learning set is reproduced. The learning
sets for all the other generalizers are instead determined by the evolutionary development of the
net. The fitness function for this evolution is the cross-validation error of the entire system.) One
interesting aspect of such nets of generalizers is that one can have an "environment generalizer".
One (or more) of the nodes in the net can be reserved for a generalizer whose input-output function
serves the same purpose as input lines in more conventional architectures. For example, a one-di-
mensional input environment, say of brightness vs. angle, is a function. Discretize the independent
variable of this function and feed the resultant numbers into the input nodes, one number per node,
and you get the conventional way of feeding data into a net. If instead one finds a learning set
which, when generalized (by a surface-fitter say) gives you the environment function, then you can
insert that generalizer together with that learning set (i.e., that environment function) as an "envi-
ronment generalizer" node in the net. With this scheme different environments don’t correspond to
different values on input lines; they correspond to different environment generalizers at the appro-
priate nodes of the net. This scheme has the advantages that it allows the net to actively query its
environment, and also allows that environment to have arbitrary size. (Neither of these properties
hold for the conventional process of discretizing that environment and feeding it into input nodes.)

See (Wolpert 1990d) for detalils.

[8] In conventional univariate non-linear time-series analysis, one is provided a sequence of
values of a single-dimensional variable for a set of timeg}, (K j < m, T some real-valued con-

stant. To try to generalize from the sequence one assumes that the value of y at a time t, y(t), is

38

determined by its value at a set of p delays, g)ty(t - 20), ..., y(t - @). To exploit this assumption

one "embeds" the original sequence as a learning set in a space with p dimensions of input and one
dimension of output. Each element of this delay-space learning set has its input components set to
the values y(t 1), y(t - 20), ..., y(t - @) for some sequence of p values chosen from the provided
time-series, and the output value of that element is now the value of the point y(t), again read off
of that time-series. One has as many points in the delay-space learning set as there are sequences
of p + 1 consecutive points in the time series. To make a prediction for y(T), given the p values y(T
-1), Y(T - 2), ..., (T - @), one simply generalizes in the delay space, i.e., one guesses what output
should correspond to the delay space question {¥J\{T - 20), ..., y(T - [x)}, basing this guess

on the delay space learning set. Viewed in terms of stacked generalization, this whole embedding
procedure is nothing more than a set of level 0 generalizers feeding into a level 1 generalizer. The
level O learning set has a one-dimensional input space - it's the time series. The p constituent level
0 generalizers are all predicated on the assumption that that time series is periodic. They differ from
one another only in what period they assume for the series; one level 0 generalizer assumes period
T, one assumes period, 2tc., all the way up to an assumption of periodjm order, these gen-
eralizers work by predicting y(t) = y(r}, by predicting y(t) = y(t - B, etc.) When presented with

the question y(t), the k’th level 0 generalizer in conventional non-linear time-series analysis makes
a guess which is completely independent of all of the elements of the level 0 learning set except for
y(t - kt); quite a dumb generalizer. From this perspective of stacked generalization, one can imme-
diately see an obvious way to try to improve the performance of non-linear time-series analysis:
replace the p level 0 generalizers which rigidly assume exact periodicity with peritids., @

with generalizers which aren’t quite so pig-headed. For example, one could instead use generaliz-
ers which only assume that y(t)st by y(t - 1), that y(t) is set by y(t -3, etc. All these level 0
generalizers could then use a conventional generalizer (e.g. a metric-based HERBIE) along with
the entire (1) time-series to estimatav y(t) is set by y(t 1), how y(t) is set by y(t -1, etc. Under

this scheme, instead of simply having the k’th level O generalizer pezdatity y(t - kt) when pro-

vided with the question y(t), that generalizer guesses what answer should corresporidedy(t)

39

on y(t - kr).

[9] It's interesting to examine fan generalizers from the point of view of the discussion earlier
on "spanning the space of generalizers". Although producing the inputs of the level 1 learning set
exclusively from the outputs of the level O learning set, fan generalizers nonetheless preserve all
the "salient" information about the input space geometry of the level O learning set. They do this
via the fan itself, which consists entirely of level O input space information and is crucial to the

construction of the input components of the elements of the level 1 learning set.

40

REFERENCES

Anshelevich, V.V., et a. (1989). On the ability of neural networks to perform generalization by
induction. Biological Cybernetics, 61, 125-128.

Carterette, E.C. and Jones, M .H. (1974). I nfor mal Speech. University of CaliforniaPress, LosAn-

geles.

Casdagli, M. (1989). Non-linear prediction of chaotic time-series. Physica D, 35, 335-356.

Dietterich, T. G. (1990). Machine learning. Annual review of computer science, 4, 255-306.
Deppisch, J., et a. (1990). Hierarchical training of neural networks and prediction of chaotic time
series. Institut fur Theor etische Physik und S-B Nicktlineare Dynamik, Universitat Frankfurt, Ger-

many. No report number.

Efron, B. (1979). Computers and the theory of statistics: thinking the unthinkable, SAM REVIEW,
21, 460-480.

Farmer, J.D., and Sidorowich, J.J. (1988). Exploiting chaosto predict the future and reduce noise,
Los Alamos report LA-UR-88-901

Gustafson, S,, Little, G., and Simon, D. (1990). Neural network for interpolation and extrapol ation.

Report number 1294-40, the University of Dayton, Research Ingtitute, Dayton, Ohio.

Holland, J. (1975). Adaptation in natural and artificial systems. University of Michigan Press.

41

Lapedes, A., and Farber, R. (1988). How neural nets work, Proceedings of the 187 IEEE Denver
conference on neural networks, publisheNearal Information Processing Systems, D.Z. Ander-

son (Ed.), 1988, published by the American Institute of Physics.

Li, Ker-Chau (1985). From Stein’s unbiased risk estimates to the method of generalized cross-val-

idation, The Annals of Satistics, 13, 1352-1377.

Morozov, V.A. (1984). Methods for solving incorrectly posed problems. Springer-Verlag.

Omohundro, S. (1987). Efficient algorithms with neural network behavior. Report UIUCSCS-R-

87-1331 of the University of lllinois at Urbana-Champaign Computer Science Department.

Poggio, T., and staff, MIT Al Lab (1988). MIT progress in understanding images. In L. Bauman
(Ed.),Proceedings of the image under standing wor kshop. McLean, VA.

Quinlan, J. R. (1986). Induction of decision trédachine Learning, 1, 81-106.

Rissanen, J. (1986). Stochastic complexity and moddlhegAnnals of Satistics, 14, 1080-1100.

Rumelhart, D. E., and McClelland, J. L. (1986)plor ationsin themicr ostructur e of cognition,

volumes| and II. MIT Press, Cambridge, MA.

Schulz, G. E., et al. (1974). Comparison of predicted and experimentally determined secondary

structure of adenyl kinasBature, 250, 140-142.

Sejnowski, T.J., and Rosenberg, C. R. (1988). NETtalk: a parallel network that learns to read aloud,
Report No. JHU/EECS-86/01, Johns Hopkins University, Electrical Engineering and Computer

42

Science Dept.

Stanfill, C., and Waltz, D. (1986). Toward memory-based reasobamgnunications of the ACM,
29, 1213-1228.

Stone, M. (1977). Asymptotics for and against cross-validaBimmetrika, 64, 29-35.

Valiant, L. G. (1984). A theory of the learnab@ammunications of the ACM, 27, 1134-1142.

Wolpert, D. (1989). A benchmark for how well neural nets gener&inkogical Cybernetics, 61,
303-313.

Wolpert, D. (1990a). The relationship between Occam’s razor and convergenOguogssx Sys-
tems, 4, 319-368.

Wolpert, D. (1990b). Constructing a generalizer superior to NETtalk via a mathematical theory of

generalizationNeural Networks, 3, 445-452.

Wolpert, D. (1990c). A mathematical theory of generalization: p&orplex Systems, 4, 151-
200.

Wolpert, D. (1990d). A mathematical theory of generalization: pa@oaiinplex Systems, 4, 200-

249. "Cross validation" is a special case of the property of "self-guessing" described in this paper.

Wolpert, D. (1990e). Improving the performance of generalizers via time-series-like pre-process-
ing of the learning seReport No. LA-UR-90-401, Los Alamos National Laboratory, NM. Submit-
ted to IEEE PAMI.

43

He Xiangdong and Zhu Zhaoxuan (1990). Nonlinear time series modeling by self-organizing
methods. Report from the Department of mechanics, Peking University, Beijing, PRC. No report

number.

44

The full learning set, L

L - (X’ y)

v

Correct output

4

(X, y)

- element of L'

/

The guess of &

Figure 1.

>
The guess of ¢

45

The full learning set, L

L - (X’ y)

Error of G’s guess

4

(X, y)

®- element of L'

Input

Figure 2.

>
Input - nearest neighbor

46

OUTPUT o

INPUT

Figure 3a.

47

OUTPUT ®

INPUT

Figure 3b.

48

OUTPUT

INPUT 2

/

INPUT 1

Figure 3c.

49

OUTPUT

/INPUTZ

//

INPUT 1

Figure 3d.

50

1) CREATING L'

L' output
Level 1/
Learning set L'. Contains r ele-
ments, one for each partition in the
level O partition set. _
L' input
—_—
Level O/ (
Learning se®. Partition se®...
Generalizers {%}. Gl(eil; '”(eiz)) Gz(eil; '”(eiz)) e quiz)
Final guess
2) GUESSING I
G'(L; a)
Level 1/
Learning set L. Generalizer G'. L oull
Question q'. puts
g, the level
1 question
L' inputs
Level O/

Learning setB. Generalizers

{G ID} Question q.
G,(8; a) G(6; a)

Figure 4.

Output

51

E ERROR

Figure 5a.

do Input
Parent function

Element of level O learning set

Level O generalizer's guessing curve (The level O
generalizer is a connect-the-dots surface fitter.)

Level O question

52

Output

GUESSING ERROR

,
}

a9 Input

= parent function

= left-in element of level O learning set

© @

= left-out element of level O learning set

qq = input component of left-out point; a
level 1 question. GUESSING ERROR forms
the corresponding level 1 output.

= level 0 generalizer's guessing curve

Figure 5b.

53

GUESSING ERROR (Level 1 output)

PY o
o ®
®
/\

Level 1input
(equalslevel 0 input)

/N = level 1question; hereidentical to

thelevel O question, do (seefigure5(a)).
() = eement of level 1learning set

Figure 5(c).

54

FIGURE CAPTIONS

Figure 1. An example of how to use stacked generalization to combine generalizers. Here we are

combining two generalizers,sGand G,. The learning set, L, is represented figuratively by the full

ellipse. A question q lying outside of L is also indicated. Finally, a partition of L into two portions
is also indicated; one portion consists of the single input-output pair (X, y), and the other porti9on

contains the rest of L. Given this partition, we train bojre@d G, on the half {L - (x, y)}. Then
we ask both generalizers the question x; their guesseg arel@. In general, since the general-
izers haven't been trained with the pair (X, y), boftagd g, will differ from y. Therefore we have
just learned something; when @uesses gand G, guesses 4 the correct answer is y. This in-

formation can be cast as input-output information in a new space, i.e., as a single point with the 2-

dimensional input (g g,) and the output (y). Choosing other partitions of L gives us other such
points. Taken together, these points constitute a new learning set, L'. We now tesid G, on

all of L and ask them both the question g. Then we take their pair of guesses, and feed that pair as
a question to a third generalizer which has been trained on L'. This third generalizer's guess is our
final guess for what output corresponds to . Assuming there’s a strong correlation between the

guesses made by,@nd G, on the one hand, and the correct guess on the other, this implementa-

tion of stacked generalization will work well.

Figure 2. An example of how to use stacked generalization to improve a single generalizer. The
(single) generalizer is G. As in figure 1, a learning set L is represented figuratively by the full el-
lipse, a question g lying outside of L is also indicated, and a partition of L into two portions is also
shown. Given this partition, we train G on the portion {L - (x, y)}. Then we ask G the question X,

and note both its guess, g and the vector from x to the nearest neighbor in {L -dxlrygeneral,

55

since G hasn’t been trained with the pair (x, y), g will differ from y. Therefore we have just learned
something; when the question is x, and the vector from x to the nearest neighbor in the learning set
is &, the correct answer differs from G’s guess by (g - y). This information can be cast as input-
output information in a new space, i.e., as a single point with the 2-dimensional irg)atr{a the

output (g - y). Choosing other partitions of L gives us other such points. Taken together, these
points constitute a new learning set, L'. We now train G on all of L and ask it the question g. Then
we take the pair of g and the vector from q to its nearest neighbor in L, and feed that pair as a ques-
tion to a third generalizer which has been trained on L'. This third generalizer’'s guess is our guess
for G’s error in guessing what output corresponds to g. Adding this estimated error (or a fraction
thereof) back to G’s guess gives our final guess. Assuming there’s a strong correlation between the
guestion and its vector to the nearest element in the learning set on the one hand, and the general-

izer’s error on the other, this implementation of stacked generalization will work well.

Figure 3a. A schematic depiction of a level 0 learning set and a level O question. Here the learning
set consists of five points, indicated by solid circles. The question is indicated by a question mark
(more precisely, the question is the input projection of the question mark, indicated by the inter-
section of the associated dotted line and the input axis.). For this example, the input space is one-

dimensional.

Figure 3b. A schematic depiction of one of the pairs of the CVPS of the level 0 learning set of figure

3a.8;, consists of the four solid circles, aid is the fifth element of the level O learning set, now

depicted by an open square rather than a solid circle. The other four pairs making up the CVPS

simply change which element of the level O learning set is the square.

Figure 3c. A schematic depiction of one of the elements of a level 1 learning set. Here we determine
the (two) level 1 inputs by running two level O generalizers on a level O {learning set, question}

pair. For the CVPS indicated in figure 3b, both of these generalizers are taught with the solid cir-

56

cles, and are then asked to guess what level O output should correspond to the input value of the
square. These two guesses form the two input components of the solid ¢hidégure, indicat-

ed by the two dotted lines. The output of this level 1 space is the same as the output of the level O
space, i.e., the output value of the single circle indicated in this figure is identical to the output val-

ue of the square in figure 3b.

Figure 3d. The level 1 learning set, made from the pairs of the level 0 CVPS, are indicated by the
solid circles in this figure. (For clarity, only three of the five points of the level 1 learning set are
shown.) Once this learning set is constructed, both level O generalizers are then taught with the full
level O learning set and asked what level O output they think should correspond to the level 0 ques-
tion. These two guesses determine the level 1 question, indicated here by (the input projection of)
a question mark. A generalizer is now trained with the level 1 learning set and then makes a guess
for this level 1 question. This guess serves as the full system’s guess for what level O output should

correspond to the level 0 question, given the level O learning set.

Figure 4. A stylized depiction of the two stages involved in the implementation of stacked gener-
alization described in section I(iv). In the first stage the level 1 learning set L' is created from the

level O partition se@ij and the set of level O generalizersp{Gln the second stage the exact same

architecture used to create L' is used to create a level 1 question from a level O question. After this
the final guess is found by training the level 1 generalizer on L' and then asking it the new-found
level 1 question. Note that this entire procedure is twice parallelizable; once over the partitions, and

once over the level O generalizers.

Figure 5a. Figures 5(a) through 5(c) are a geometric depiction of how stacked generalization at-
tempts to improve the guessing of a single generalizer. The figures assume the same stacked gen-
eralization architecture as in figure 2, except that the level 1 inputs are one-dimensional, consisting

solely of the level O input. Figure 5(a) illustrates a parent function and (part of) a learning set made

57

up of some (noise-free) samples of that parent function. (Other elements of the learning set exist
outside the range of this figure.) The level O generalizer is a simple connect-the-dots generalizer;
its guessing is shown for the learning set is explicitly depicted. A particular question is indicated

by ¢ Our task is to estimate and then correct for the error of the level 0 generalizer in guessing

what output should correspond tg qhis is achieved with a second, level 1 generalizer.

Figure 5b. See figure 5(a). To perform the stacked generalization, we need to first form the level 1
learning set. This is done via a CVPS of the original level 0 learning set. One partition pair from
this CVPS is illustrated in this figure. The point in the learning set corresponding to the hatched

circle is6;,; the level 0 generalizer is trained on all other points of the level O learning set, and then
its error at guessing what output corresponds to the input compor&pt(oé., corresponds to
d4) is tabulated. This error is the output of a point in the level 1 learning set; the corresponding

level 1 input is the same as the level O inpyt, g

Figure 5(c). See figures 5(a) and 5(b). This figure depicts some elements of the level 1 learning set,
which was made according to the algorithm described in figure 5(b). The full stacked generaliza-
tion scheme works by first using a generalizer to guess what level 1 output should correspond to
the level 1 question (which is identical to the level O question), given the input-output pairs of the
level 1 learning set. After this guess is found, one finds the level O generalizer's guess for what
output corresponds to the level 0 question, and subtracts from this level 0 guess the level 1 guess
multiplied by .5 (just to be conservative). This gives our final guess for what output corresponds
to the level O input. In this particular example, since the errors of the level O generalizer are so
strongly correlated with the level O question, for any reasonable level 1 generalizer the error of the
full stacked generalization scheme will be significantly lower than the error of the level O general-

izer used straight.

