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Over the last two decades, the machine learning and related communities have
conducted numerous studies to improve the performance of a single classifier by
combining several classifiers generated from one or more learning algorithms. Bag-
ging and Boosting are the most representative examples of algorithms for generat-
ing homogeneous ensembles of classifiers. However, Stacking has become a com-
monly used technique for generating ensembles of heterogeneous classifiers since
Wolpert presented his study entitled Stacked Generalization in 1992. Studies that
have addressed the Stacking issue demonstrated that when selecting base learn-
ing algorithms for generating classifiers that are members of the ensemble, their
learning parameters and the learning algorithm for generating the meta-classifier
were critical issues. Most studies on this topic manually select the appropriate
combination of base learning algorithms and their learning parameters. However,
some other methods use automatic methods to determine good Stacking config-
urations instead of starting from these strong initial assumptions. In this paper,
we describe Stacking and its variants and present several examples of application
domains. © 2015 John Wiley & Sons, Ltd.
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INTRODUCTION

Aclassifier is a system that takes instances from a
dataset and assigns a class or category to each

of them. To perform this task, the classifier must have
some type of knowledge. The classifiers can be created
by using various forms of learning (e.g., deduction,
analogy, or memorization), but the most common way
of acquiring this knowledge is to infer it from a set of
previously classified instances. This form of learning is
called supervised learning.

Most research in machine learning has been
devoted to developing methods that automate the
classification tasks. Despite the variety and number
of models that have been proposed, including artifi-
cial neural networks,1 decision trees,2 inductive logic
programming,3 and Bayesian learning algorithms,4
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the construction of a perfect classifier for any given
task remains unobtainable.5 Furthermore, no single
approach can claim to be superior to any other.6 Thus,
the combination of different classification models is
considered a viable alternative for obtaining more
accurate classification systems. The strategy in ensem-
ble systems is to create a set of classifiers and combine
their outputs such that the combination outperforms
all of the single classifiers. To achieve this goal, it is
necessary to guarantee that (1) the individual classi-
fiers are both accurate and diverse and (2) the output
combination amplifies the correct decisions and can-
cels out the incorrect decisions.7

Studies in the ensemble field have typically
focused on generating the ensemble members by
applying a single learning algorithm and combining
their outputs using a mathematical function. In con-
trast, Stacking generates the members of the Stacking
ensemble using several learning algorithms and subse-
quently uses another algorithm to learn how to com-
bine their outputs.
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FIGURE 1 | Influence of diversity on the ensemble decision.

The remainder of this paper is organized as
follows. First, some background on ensemble classi-
fiers is given. Then, we present the main features of
Stacking and a review of some of its variants, related
approaches and recent applications. Finally, we draw
some conclusions and discuss important topics about
Stacking.

ENSEMBLES OF CLASSIFIERS

An ensemble of classifiers is a set of classifiers whose
individual decisions are combined to obtain a system
that hopefully outperforms all of its members.8

Similar to what occurs with other systems in
the field of artificial intelligence, the ensembles of
classifiers respond to an attempt to emulate human
behavior. Specifically, these systems try to replicate
the performance of a human being when it faces an
important decision. For example, it is common to
ask the opinion of different doctors before having
a surgery, performed or read reviews before buying
a product. In other words, a decision is considered
more reliable if it is made based on the opinion of
different experts. Extrapolation of this proposition to
the field of machine learning leads to the development
of systems composed of several classifiers, in which the
final decision is made collectively. This line of research
in the machine learning field is known as the study of
ensembles of classifiers.9

The strategy in ensemble systems is to create a
set of accurate and diverse classifiers and combine

their outputs such that the combination outperforms
all the single classifiers. Therefore, classifier ensembles
are built in two phases: generation and combination.
In the generation phase, the individual components of
the ensemble, known as base classifiers, are generated.
In the combination phase, the decisions made by the
members of the ensemble are combined to obtain
one decision. A detailed description of these phases is
provided in the following subsection.

Generating Base Classifiers
To obtain an ensemble of classifiers that outperforms
all its members, the base learners must be both
accurate and diverse. A classifier is accurate when its
classification error is lower than that obtained when
the classes are randomly assigned. Two classifiers are
diverse if they make errors at different instances.

Demanding accurate classifiers appears to be
a logical requirement; the combination of a set of
incorrect decisions cannot easily generate a correct
hypothesis. To illustrate why diversity is a necessary
condition, consider, in a two classes domain, an
ensemble of three classifiers, h1, h2, and h3, and a
new example x that must be classified. If the three
classifiers are not diverse, then when the decision given
by h1 is wrong, the decisions given by h2 and h3 will
also be wrong. Therefore, the final ensemble decision
will be wrong. However, if the base classifiers are
diverse, the decisions given by both h2 and h3 will be
correct even when the decision given by h1 is wrong.
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TABLE 1 Summary of Diversity Measures

Name Symbol Definition ↑/↓1 Pairwise

Q statistic Q N11N00−N01N10

N11N00+N01N10 ↓ Y

Correlation coefficient 𝜌
N11N00−N01N10√

(N11+N10)(N01+N00)(N11+N01)(N10+N00)
↓ Y

Fail/non-fail disagreement measure dis N01+N10

N11+N10+N01+N00 ↑ Y

Double-fault measure DF N00

N11+N10+N01+N00 ↓ Y

Kappa degree-of- agreement statistic 𝜅
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(
xn

))
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N, cardinality of the test set; K, number of classes; L, the number of base classifiers; Nab is the number of instances in the dataset, classified correctly (a= 1) or
incorrectly (a=0) by the classifier i, and correctly (b=1) or incorrectly (b=0) by the classifier j; Nij, number of instances in the dataset, labeled as class i by the
first classifier and as class j by the second classifier; Ci(xn), class assigned by classifier i to instance n; Is(c), a Boolean function. Its value is 1 if c is true and 0 if c
is false; Nn

k , number of base classifiers that assign instance n to class k; and l(xn), number of classifiers that correctly classified instance n.
1Monotonically increasing/decreasing measures are identified with an ascending/descending arrow, respectively.

Therefore, the ensemble decision will be correct if
all the decisions have the same relevance. Figure 1
illustrates this example graphically.

Diversity is a necessary condition for obtaining
a good ensemble. However, measuring diversity is not
straightforward because there is no formal definition
of diversity and no consensus on how to quantify
this magnitude.10 Some of the more common ways to
quantify ensemble diversity are shown in Table 1.

We have analyzed the relevancy of diversity
among the base classifiers and how to quantify it.
It is now necessary to review the most well-known
techniques for generating diverse classifiers.

The techniques used to generate diverse classi-
fiers are based on the idea that the hypothesis of a
classifier depends on both the learning algorithm and
the subset used to generate these classifiers. Therefore,
it is possible to generate classifiers whose decisions are
dissimilar from each other by varying the training set
and/or learning algorithm.

Three different approaches can be used to gener-
ate an ensemble of classifiers9 by varying the training
set:

• Resampling the training examples: This
approach includes two of the most widely
known methods for constructing classifier
ensembles: Bagging11 and Boosting.12 Bagging

builds different versions of the training set by
sampling with replacement. In contrast, Boost-
ing obtains the different training sets by focusing
on the instances that are misclassified by the
previously trained classifiers.

• Manipulating the input features. Another way
to achieve diversity between classifiers is by
modifying the set of attributes used to describe
the instances.13–17

• Manipulating the output target: Another
approach for generating a pool of diverse
classifiers is having each classifier solve a dif-
ferent classification problem. This category
includes methods that solve multiclass problems
by converting them into several binary subprob-
lems. Among the strategies for decomposing
a multi-class problem into two-class problems
are one-against-one (OAO),18 one-against-all
(OAA),19 one-against-higher-order (OAHO)20

and error correcting output codes (ECOC).21

Other systems that decompose the multiclass
problem into several pairwise subproblems, such
as binary-complementary-ensemble (BCE)22,23

and complementary-complementary ensemble
(CCE)24 can be grouped into this approach.

Methods that vary the learning algorithm can be
subdivided in two groups:
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• Approaches that use different versions of the
same learning algorithm. Kolen and Pollak25

demonstrated that a pool of artificial neural
networks starting from different initial weights
can be trained to generate diverse classifiers and
thus a good ensemble. Alternatively, a pool of
diverse decision trees can be obtained by varying
the criterion used to expand a C4.5. node.26

• Approaches where diversity is obtained using
different learning algorithms. According to
Wolpert,27 ensembles with base classifiers trained
from different learning algorithms (heteroge-
neous ensembles) exploit the different biases of
each learning algorithm. Therefore, most studies
in the field of ensembles have focused on the
combination of different inducers, such as arti-
ficial neural networks, decision trees, Bayesian
models, nearest neighbor, and support vector
machines. As will be shown below, Stacking27

and most of its variants achieve diversity by
applying this approach.

Integrating Decisions
Once the base classifiers that comprise the ensem-
ble have been built, the next step is to establish a
procedure through which the individual decisions are
combined to obtain a final hypothesis. There are two
main strategies for combining classifiers: fusion and
selection.6,28 Classifier selection presupposes that each
classifier is an expert in some local region of the space.
Therefore, when an instance is submitted for classifi-
cation, the ensemble decision coincides with the deci-
sion given by the classifier responsible for the region of
the space to which the instance belongs.29 In classifier
fusion, the decisions from all members of the ensemble
are combined in some manner to make the ensemble
decision. Classifier fusion algorithms include combin-
ing rules, such as the average, majority vote, weighted
majority vote, and the Borda Count, and more com-
plex integration models, such as meta-classifiers. A
meta-classifier is a second-level classifier generated
from the outputs given by the base learners. According
to Rokach,30 Stacking, arbiter tree,31 combiner tree32

and the Grading approaches33 are considered integra-
tion methods based on meta-learning.

STACKED GENERALIZATION

Stacking is short for Stacked Generalization.27 As
noted above, unlike other ensemble generation algo-
rithms, such as Bagging or Boosting, which generate
an ensemble of classifiers using the same learning algo-
rithm (homogeneous ensembles), Stacking generates

an ensemble composed of heterogeneous classifiers.
Because each learning algorithm uses different meth-
ods to represent the knowledge and different learning
biases, the hypothesis space will be explored from dif-
ferent perspectives with the aim of generating a pool
of diverse classifiers. Therefore, when their predictions
are combined, the resultant model is expected to be
more accurate than each individual member.

To combine the individual predictions of the
ensemble members, Stacking uses the concept of
meta-classifiers or meta-learners. The meta-classifier
or level-1 model is generated using a learning algo-
rithm following a cross-validation-like process. This
classifier attempts to model how the outputs of the
base classifiers or level-0 models should be combined
to generate the final output. Figure 2 provides a gen-
eral overview of the Stacking process.

Stacking is an ensemble of classifiers in which (1)
the base learners are trained using different training
parameters (generally different learning algorithms)
and (2) the outputs of the base learners are combined
by using a meta-classifier. One of the issues in Stacking
is obtaining the appropriate combination of base-level
classifiers and the meta-classifier, especially in relation
to each specific dataset. If only a small number of
classifiers and algorithms will be used, this problem
can be solved by a simple method, namely, exhaustive
search, in a reasonable amount of time. However, it is
difficult to determine the best Stacking configuration
when the search space is large.

Formal Definition
Given a dataset S, Stacking first generates ran-
domly a subset of equal size datasets S1, … , SJ and
subsequently follows a process similar to a J-fold
cross-validation process: it omits one of the subsets
(e.g., Sj) to be used later. The remaining instances
S(−j) = S− Sj are used to generate the level-0 classifiers
by applying K learning algorithms, k= 1, . . ., K, to
obtain K classifiers. S(−j) and Sj are the training and test
sets respectively of the j-th fold in the cross-validation.
After the level-0 models have been generated, the Sj set
will be used to generate the level-1 instances. Level-1
training data are generated from the predictions of
the level-0 models over the instances in Sj, which were
omitted for this purpose (Figure 3a). Level-1 data have
K attributes, whose values are the predictions of each
one of the K level-0 classifiers for every instance in Sj.
At the end of the cross-validation process, each level-1
training example will be composed for K attributes
(the K predictions) and the target class, which is
the real class value for every instance in S. Once the
level-1 data have been built from all instances in S, any
learning algorithm can be used to generate the level-1
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FIGURE 2 | Overview of the stacking procedure.

model (Figure 3b). To complete the process, the level-0
models are re-generated from the entire dataset S (it
is expected that this process improves the accuracy
of the classifiers slightly) (Figure 3c). In Figure 3d
the final ensemble structure generated by Stacking is
shown. To classify a new instance, the level-0 models
produce a vector of predictions that is the input to the
level-1 model, which in turn predicts the class.

STACKING VARIANTS AND RELATED
APPROACHES

Since Wolpert first proposed Stacking in 1992, several
related studies have been published. In general terms,
these studies can be grouped into two categories: those
that address the Stacking parameter selection and
those that present approaches similar to Stacking. We
provide a brief review of these two types of studies in
the following subsections.

Stacking Variants
As initially noted by Wolpert,27 some issues of Stack-
ing are considered black art, such as the selection of
base classifiers, the type of meta-data and the classi-
fier to be used in level-1. Some studies that address
these issues and other related topics are presented
below.

Skalak34 proposed the use of instance-based
learning classifiers that store a few prototypes per

class as level-0 classifiers. They also proposed to use
a decision tree as a meta-classifier or level-1 classi-
fier. Fan et al.35 proposed to determine the overall
accuracy of the ensemble generated by Stacking using
conflict-based accuracy estimates. The authors use two
tree-based classifiers and one rule-based classifier as
base-level classifiers. In contrast, for the meta-level,
they use a rote table that behaves as a decision tree
without pruning in this case. This Stacking configu-
ration is evaluated using four datasets (including two
artificial datasets). Although the authors claim that
the proposed measure is superior to all existing mea-
sures, their results do not clearly demonstrate that this
estimate can be generalized to more datasets or other
meta-classifiers.

Merz36 proposed a variant of Stacking that
uses correspondence analysis to detect correlations
between base-level classifiers. Once dependencies have
been removed from the original meta-level space, a
nearest neighbor method (meta-level algorithm) is
applied over the resulting feature space. This approach
is called SCANN.

Ting and Witten37 address two Stacking con-
figuration issues: level-1 classifier types and the data
types of the meta-level. They propose the use of class
probabilities rather than a single class prediction as
outputs of the level-0 classifiers. Thus, each instance
of the meta-level is composed of the class probabilities
given for each level-0 classifier, followed by the actual
class of the instance. The authors argue that by using
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FIGURE 3 | Generating an ensemble of classifiers using Stacking.

the class probabilities as meta-data, Stacking uses
both the prediction and confidence of the base-level
classifiers. Regarding the type of meta-level classifier
to be used, the authors conclude that multi-response
linear regression (MLR) is the most appropriate
algorithm for generating the meta-level model, at
least when using class probabilities as meta-level data.
Moreover, Ting and Witten studied the necessity of
non-negative constraints for the attribute weights in
linear models because both Breiman38 and LeBlanc
and Tibshirani39 report the need to use nonnegative

constraints when using Stacking in a regression task.
They concluded that non-negative restrictions are not
necessary in Stacking to improve the overall accuracy
of the ensemble when performing a classification task.
However, these restrictions are useful for improving
the interpretability of the level-1 model.

Based on work of Ting and Witten,37 Seewald40

used MLR as the level-1 classifier but with a differ-
ent set of attributes in the meta-level to overcome a
weakness of Stacking with MLR (SMLR) in domains
with more than two classes. This weakness was not
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present in the original version of Stacking, and See-
wald argues that this new weakness may be due to
the dimensionality of the meta-data. When MLR is
used as the meta-classifier, a linear equation for each
class is constructed using the class probability distribu-
tions given by the base classifiers. StackingC, as this
variant is known, is proposed to use only the class
probabilities associated with the class to which the lin-
ear model is built, thus reducing the dimensionality
of the attributes of the meta-level by a factor equal
to the number of classes. The results of this research
indicate an improvement over SMLR when used with
the full set of probability distributions. Furthermore,
Seewald argues that the observed improvement is due
to not only the reduction of the dimensionality of the
meta-data but also the high diversity of class models
generated at the meta-level.

Todorovski and Džeroski41 proposed a variant
of Stacking that uses a decision tree approach as the
learning method in the meta-level. This method, called
meta decision trees (MDTs), replaces class-value pre-
dictions in its leaf nodes by the name of the base-level
classifier that should be used to obtain the class for
a specific example. The meta-level data are com-
posed of properties of the probability distributions
that reflect the confidence of the base-level classifiers
(e.g., entropy and maximum probability) rather than
the distributions themselves. These properties are used
to generate small MDTs.

Džeroski and Ženko42 proposed two additional
variants of Stacking. The first variant addresses the
issue of the type of meta-data based on SMLR pro-
posed by Ting and Witten.37 The authors propose an
extension of meta-data, adding two additional sets
of attributes: the probability distributions multiplied
by the maximum probability and the entropies of
the probability distributions. Moreover, Džeroski and
Ženko proposed another extension of SMLR in which
they replace the linear regression approach by a tree
induction approach as the meta-level model. They
called this method Stacking with multi-response model
trees (SMRMT). According to the authors, comparing
different Stacking approaches, SCANN, SMDTs,
SMLR, and the SelectBest scheme (selecting the best
classifier with cross-validation) appear to perform at
approximately the same level. Moreover, Džeroski and
Ženko concluded that SMRMT outperforms previous
Stacking variants, including StackingC, and selects the
best classifier from the ensemble by cross-validation.

Menahem et al.43 proposed a new variant of
Stacking called Troika, whose main feature is that
the meta-level is composed of three layers. In the first
layer, the outputs of the base classifiers are combined
using a OAO ensemble, whose members are called

specialist classifiers. The goal of each specialist is to
predict the probability that an instance belongs to one
of the two classes that it distinguishes. In the second
stage, the outputs of the specialists are combined again
using a OAA schema. The task of the level-2 classifiers
is to learn the behavior patterns of the specialist
classifiers and to predict whether the output given by a
specialist is correct. The third layer contains a classifier
and produces the ensemble final decision. Moreover,
the authors analyze three arrangements to train the
base classifiers (OAO, OAA, and all-against-all) and
determine that Troika is more accurate than Stacking
and StackingC in all cases. Regarding the runtime, the
authors conclude than Troika outperforms Stacking
and StackingC only when the base classifiers are
trained using the OAO architecture.

Ledezma et al.44 proposed an approach to deter-
mine good Stacking configurations by a genetic search.
Their approach, called GA-Stacking, not only deter-
mines which meta-level and which (and how many)
base classifiers must be present but also their learning
parameters. Moreover, GA-Stacking provides flexibil-
ity and extensibility compared to previous Stacking
variants because it can easily incorporate new learning
algorithms and is not restricted by ‘a priori’ assump-
tions. Moreover, GA-Stacking adapts the Stacking
configuration to the domain biases and characteris-
tics so that the Stacking configurations determined
by GA-Stacking are domain dependent. However,
GA-Stacking requires a longer execution time than the
other approaches to obtain a specific Stacking config-
uration.

Following a similar approach to the work of
Ledezma et al.44 and posing the Stacking configura-
tion as an optimization problem, Chen and Wong45

proposed the use of ant colony optimization (ACO)
to determine domain-dependent Stacking configura-
tions. They use the meta-heuristic ACO to determine
the level-0 Stacking classifiers with a predefined level-1
classifier45 as well as the entire Stacking system config-
uration (level-0 and level-1).46

Recently, Shunmugapriya and Kanmani47

proposed the use of another meta-heuristic search
algorithm to determine which and how many base
classifiers to use and what meta-classifier to use based
on the domain. Therefore, they have proposed to use
an artificial bee colony (ABC) method. The authors
compared their results with the studies of Ledezma
et al.44 and Chen and Wong,45 and they conclude that
the results of the Stacking configurations determined
by ABC are comparable to those obtained in the
previous study.

The approaches introduced above are compared
in Table 2 with regard to the focus area, number of
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base classifiers, algorithms for base-classifier genera-
tion, type of meta-data, and meta-level classifier. In
addition, some observations are included.

Related Approaches
In addition to the Stacking variants already discussed,
there are studies that can be viewed as either Stack-
ing-based implementations or studies that hold many
similarities with Stacking.

Chan and Stolfo48 proposed a strategy similar
to Stacking, which they called Combiner. The main
idea behind the Combiner, as the authors claim, is to
merge the predictions of base classifiers by learning
the relation between the predictions of base classifiers
and the correct prediction. Moreover, they propose
a variant of the combiner strategy called attributes
combiner, in which the attributes of the meta-level
are composed of not only the predictions of a class
but also the original attributes of the instance. As
shown in Schaffer’s study of Stacking bi-level,49 this
approach can reduce the performance of the ensemble.
In contrast, Chan and Stolfo48 proposed an approach
that uses what they call an Arbiter, which is a classifier
independent from the remaining base classifiers that
is trained on a subset of the original dataset. This
subset of the data consists of the instances in which
the base classifiers present diverse predictions. The
purpose of an arbiter is to provide an alternative
and more elaborate prediction when base classifiers
present contradictions. In addition, Chan and Stolfo
proposed what they call an arbiter tree, in which
arbiters that specialize in resolving conflicts between
pairs of classifiers are arranged in a binary decision
tree. To carry out the classification of an instance,
the method starts from the leaf nodes formed by base
classifiers and goes up through the tree to the root
node that provides the final classification.

Ting50 proposed a composite learner framework
that selects the classification that is estimated to have
the higher accuracy as the final prediction of the
ensemble. This framework uses the predictions of the
base classifiers to learn a function that reflects the
inner measure of confidence of the algorithm on an
estimate of their accuracy on the output. This function
can be used to combine the expertise of the classifier.

Gama and Brazdil51 proposed a method closely
related to Stacking that they called Cascade Gener-
alization. In this method, the classifiers are applied
sequentially, and there is no meta-classifier. When each
base classifier is applied to the data, it increases the
number of attributes of the dataset by adding the class
probability distribution. The following classifier then
uses this new dataset so that the order in which clas-
sifiers are used becomes an important factor.

Seewald and Fürnkranz33 proposed a scheme
known as Grading. This scheme creates a meta-level
classifier for each level-0 classifier. The learning
task for each level-1 classifier is to predict whether
the level-0 classifier prediction will be correct. The
meta-level data are composed of base-level attributes,
and the class values are correct or incorrect. The final
prediction of the ensemble is calculated through a
weighted voting mechanism over the predictions of
the base classifiers. The weight assigned to the vote of
each base classifier is the confidence that his predic-
tion will be correct. This weight is estimated by the
meta-classifier associated with the base classifier. This
work has some similarities with the work performed
by Ting.50

Torres-Sospedra et al.52 proposed a combination
strategy based on ANN in which the predictions
of the level-0 classifiers for the entire training set
are used to train the meta-classifier. Based on this
idea, they propose two different combination schemes:
Stacked and Stacked+. In both schemes, the outputs
provided by the base learners are used as inputs to the
meta-level, but in Stacked+, the original input data are
also used as inputs to the meta-classifier.

Inspired by the work of Wolpert27, Cohen
and Carvalho53 proposed a stacked of classifiers
to be applied in sequential partitioning tasks. This
meta-learning method, called stacked sequential
learning, SSL, that seeks to augment an arbitrary
base learner in sequential learning problems.54

In this approach, during the training phase, a
cross-validation process is carried out in order to
obtain the predicted labels, which are joined with the
original input features vector, taking into account a
neighborhood around the examples. With this train-
ing dataset—that they called extended dataset—a
metalearner is built and a base learner is obtained
from the original dataset. Then, in the inference phase,
when a new instance arrives, the base learner is used
to generate the prediction label for the instance. After
this label generation, the extended instance is created
so that the metalearner can use it to produce the final
prediction.

Based on GA-Stacking44,55, Ordoñez et al.56

proposed an approach that uses genetic algorithms
to determine which base classifiers must be present
in the ensemble as well as the method used to com-
bine these classifiers. Although the final ensemble uses
a meta-classifier as the decision combination method
in some cases, in other cases, it uses other methods of
combining base classifier decisions. Hence, it is con-
sidered a related work and not a Stacking variant.

Based on work of Cohen and Carvalho,53 Gatta
et al.57 proposed a new framework whose goal is to
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TABLE 2 A comparison of Focus Area, Base, and Meta-Level Parameters of Stacking-Based Approaches

Year Authors Focus Area

Number of

Base Classifiers Algorithms for Base Classifiers Type of Metadata Meta Classifier Observations

1997 Skalak34 Base classifier
selection

2, 3 and more than
3 (3, 5, 11, 21)

Instance-based classifiers (simple
nearest neighbor classifier)

Class predictions Voting, Nearest Neighbor
and ID3

Homogeneous ensemble

1999 Merz36 Meta-level 5 to 8 Back propagation neural network,
CN2, C4.5, OC1, OC1 variant,
PEBLS, 1-NN, naïve Bayes

Class predictions represented in a
space of uncorrelated
dimensions

Nearest neighbor Correspondence analysis
(errors)

1999 Fan et al.35 Overall
accuracy of
the
ensemble

2 and 3 Ripper, Cart, ID3 and C4.5 Class predictions A rote table (it functions as
an un-pruned full
decision tree)

New metrics: conflict-based
accuracy estimate and
conflict-based accuracy
improvement estimate

1999 Ting and
Witten37

Meta-level 3 C4.5, naïve Bayes and IB1 Class probability distributions Multi-response linear
regression (MLR)

Represents meta-level data as
a class probability vector

2002 Seewald40 Meta-level data 6 Decision table, C4.5, naïve Bayes,
kernel density, MLR and K*

Reduced class probability
distributions

MLR A Stacking variant called
StackingC

2000 Todorovski and
Džeroski41

Meta-level data
and learner

5 C4.5, LTree, CN2, k-NN and naïve
Bayes

Class probability distribution
properties (e.g., entropy and
maximum probability)

Meta decision trees (MDTs) A Stacking variant called
Stacking with MDTs

2004 Džeroski and
Ženko42

Meta-level data
and learner

3 and 7 C4.5, k-NN, naïve Bayes, K*, kernel
density estimation, decision
table, MLR

Class probability distributions and
class probability distribution
augmented with two additional
calculated attributes

Multi-response model trees
(MRMT) and MLR

Two Stacking variants

2009 Menahem
et al.43

Meta-level
classifier

1, 3 and 6 C4.5, VFI, IBk, PART, Bayes-Net,
SMO.

Class probability distributions Three stages in logistic
algorithm

A Stacking variant in which the
meta-level is split into three
layers. Base classifiers are
trained using two different
binarization methods (OAA,
OAO) and the AAA scheme.

2010 Ledezma
et al.55

Whole Stacking
system

Variable. up to 10 C4.5, naïve Bayes, simple naïve
Bayes, IBk, PART, DT, decision
stump, random forest, random
tree, MLR, MRMT, K*, VFI,
conjunctive rule, JRip, Nnge,
hyper-pipes

Probability distributions Variable. Selected by a
genetic algorithm

Uses genetic algorithms for the
parameter settings of
Stacking: GA-Stacking

2011 Chen and
Wong45,46

Entire Stacking
system

Variable Naïve Bayes, logistic classifier, IB1,
IBk, K*, OneR, PART, ZeroR,
decision stump, C4.5

Probability distributions C4.545 and selected by the
ant colony46

Uses an ant colony
optimization technique for
the parameter settings of
Stacking: ACO-Stacking

2013 Shunmugapriya
and
Kanmani47

Entire Stacking
system

Variable. up to 10 Naïve Bayes, logistic classifier, IB1,
IBk, K*, OneR, PART, ZeroR,
decision stump, C4.5

Probability distributions Variable. Selected by the
artificial bee colony
algorithm

Uses a bee colony algorithm for
the parameter settings of
Stacking: ABC-Stacking
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capture the data interactions using a neighborhood
function. In this way, the meta-classifier is trained
using an extended training set that is composed
by the original data set and the output given by
this neighborhood function. To evaluate the perfor-
mance of this general framework, called MS-SSL,
two implementations of the neighborhood function
were proposed. These implementations were based
on the combination of two different Multi-Scale
Decomposition schemes (a pyramidal decomposition
and a multi-resolution decomposition) and a sam-
pling pattern. Both models (Pyr-SSL and MR-SSL)
were built using AdaBoost, with a maximum of 100
decision stumps, as classification algorithm. The pro-
posed systems were evaluated in two domains: a text
categorization task and an image pixel classification
problem. According to the authors, experimental
results proved that, in both domains, MS-SSL out-
performs classical SSL, CRF58 and AdaBoost. A
drawback presents in MS-SSL is the impossibility of
dealing with multiclass problems. One way to address
this difficulty is modifying the neighborhood function
and replacing the base classifiers used in the original
MS-SSL scheme by others capable of dealing with
data belonging to N classes. This adaptation, called
MMSSL, is presented and applied for the resolution of
several multi-class sequential learning problems in.59

In this study, the authors concluded that MMSSL
shows significant performance improvement com-
pared with classical approaches. Moreover, authors
note that MMSSL is able to keep the relationship
among classes at different scales. Therefore, from a
qualitative point of view, it is possible to state that
the results of MMSSL are better than those obtained
with the rest of the evaluated models.

Trivedi and Kapadia60 suggested improving the
ensemble accuracy by combining the philosophies of
both Stacking and Boosting. The proposed algorithm,
named ‘sequential stacking’, trains the base classifier
sequentially, giving more importance to instances that
were misclassified by the previous classifiers. After the
training, the outputs of the level-0 classifiers are used
to train the meta-classifier. Therefore, the diversity
among the base classifiers is achieved using a version
of Boosting instead of cross-validation.

Applying Stacking
Most works related to Stacking have focused on
determining an answer to what Wolpert called black
art. However, there is a series of studies focused on the
application of Stacking in real domains. We present
some of the most representative examples below.

Doumpos and Zopounidis61 used Stacking to
distinguish potential defaulters from non-defaulters.

Their work is focused on the combination of seven
classification algorithms (linear discriminant func-
tions, quadratic discriminant functions, logistic
functions, probabilistic neural networks, near-
est neighbors, decision trees, and support vector
machines), which have been successfully used in pre-
vious studies on credit risk assessment. The outputs
of the level-0 classifiers are transformed by applying
a principal component analysis and are subsequently
sent to the meta-classifier. To complete the study,
seven different meta-classifiers were implemented
(each using one of the seven above-mentioned clas-
sification algorithms) and 54 different scenarios
(different combinations of the characteristic parame-
ters of each classification algorithms) on three datasets
were analyzed. According to the authors, although the
experimental results are affected by the value of the
classification algorithm parameters, the models based
on Stacking are more efficient than the single-method
models. Moreover, they observed that the exclusion
of a level-0 classifier does not necessarily reduce the
Stacking performance.

Hu and Tsoukas62 applied a method based
on the Stacking methodology to identify the factors
that affect consumer choices. The main goal of this
study was to investigate the role of demographic
and situational factors on consumer choices. In their
investigation, they use classifier ensembles composed
only of ANNs. According to the authors, all imple-
mented models benefited from stacked generalization,
and the best models are those that contain exclusively
situational variables.

Qian and Rasheed analyzed Stacking and Voting
as tools to predict the trend of the Dow Jones index63

and the trend of the exchange spot rate of the US dol-
lar against the British pound trend.64 In their investi-
gation, they used artificial neural networks, decision
trees and k-nearest neighbors as level-0 classifiers but
provided no information about the meta-classifier. In
both studies, they conclude that Stacking and Voting
have a similar performance, and in both cases, their
gain in relation to the best level-0 classifier is null. The
authors argue that this result is due to the lack of diver-
sity among the level-0 classifiers.

The application of the main idea behind the
Stacked Generalization is known as blending of clas-
sifiers in some domains.65 Such is the case of the work
of Sill et.al66 in which the authors present the appli-
cation of Stacking as a key facet of the second place
team solution to the Netflix Prize Competition.67

In this work, the authors presented a meta-level
linear technique, known as Feature-Weighted Linear
Stacking. This technique combines the base classi-
fiers predictions linearly through coefficients that are
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themselves linear functions of some additional inputs
known as meta-features. This approach demonstrates
an accuracy improvement over the standard linear
stacking. However, as authors claim, the creation of
useful meta-features is an art, so it depends on the
application domain.

Escalera et al.,68 applied Stacked Sequential
Learning53(SSL)to a problem related with laughter
detection. In their study, they proposed the fusion of
both audio and video cues to deal with the laugh-
ter recognition in face-to-face conversations. Once
the audio and the visual cues have been identified,
processed, and merged to obtain a unique feature
vector, a level-0 classifier is trained. Then, according
to the SSL scheme, an extended data set is created
which joins the original training data features with
the predicted labels produced by the level-0 classifier.
Finally, this extended data set is used as input to a sec-
ond classifier. The experimental results demonstrated
that the proposed model outperforms AdaBoost.
Nevertheless, the use of both audio and visual cues
does not seem to improve the results obtained when
only audio features are used.

A study developed using work from computer
science, psychiatry, and nuclear medicine69 analyzed
the use of Stacking to differentiate Alzheimer’s disease
and mild cognitive impairment. Because medicine
offers a host of tools designed to help the physician
in his diagnostic process, in this study, Stacking is
viewed as not only a method for building heteroge-
neous ensembles but also a method for integrating the
decisions from different diagnostic tools, including
PET scans, Consortium to Establish a Registry of
Alzheimer’s Disease, mini-mental state examination
and clock drawing tests. Therefore, each level-0
classifier is k-NN trained from data from one of the
sources. The experimental results demonstrated that
the mean accuracy of a simple k-NN including all of
the features was 76%, whereas the mean accuracy
of Stacking was 83%. Thus, Stacking achieved an
accuracy gain of 7%.

StackTIS70 is a Stacking-based methodology
whose objective is the detection of potential trans-
lation initiation sites (TISs). The proposed model is
based on the combination of three different classifiers,
where each classifier learns from data described by dif-
ferent attributes. The first classifier is an SVM that
is trained to identify the coding potential of a cDNA
sequence. This classifier uses the 64 codon frequencies
as input. The second classifier is a first-order homoge-
neous Markov chain, whose inputs are the segment of
cDNA that enclose an ATG codon (starting from posi-
tion −7 and ending at position +5). The third classifier
is a heuristic model that calculates the probabilities

of an ATG to be the TIS based on its distance from
the 5’. Finally, the predictions given by these three
components are used as input to the meta-classifier. In
this work, two different learning algorithms were con-
sidered as meta-classifiers, namely, MLR and M5’,71

but the experimental results indicate than M5’ out-
performs MLR slightly. StackTIS was tested on two
human datasets and one rice dataset. According to
the authors, for the three evaluated domains, StackTIS
outperforms other popular approaches that are com-
mon in the TIS prediction literature.

Razmara and Sarkar72 applied an Stacking
variant to the field of the Statistical Machine Trans-
lation. In their investigation, the authors adopted
the approach suggested by Wolpert under which
cross-validation can be used to construct dif-
ferent weak classifiers. So, Razmara and Sarkar
propose building an homogeneous ensemble in which
each base classifier–translation model implemented
using a statistical machine translation system called
Kriya73 − is training using k-1 partitions of the data.
Then, the remaining data partition is used to tune the
base learner parameters. The hypothesis from these
base classifiers are combined in a second module called
Ensemble Decoding. To provide a greater flexibility in
its answer− scores−, the Ensemble Decoding module
is prepared to handle different mixture operations:
weighted sum, weighted max, model switching, and
product. Experimental evaluation on two language
pairs showed that the proposed model outperforms
Bayesian Model Averaging and, in most cases the
ensemble outperforms every one of its base translator.

CONCLUSION

Today, it is common to use algorithms, such as Bag-
ging and Boosting, to generate ensembles of clas-
sifiers as a standard method in classification tasks.
Such techniques are implemented in a large number
of data mining tools, which facilitates their use and
evaluation. Thus, many studies have focused on the
application of these techniques in a variety of domains.
However, after more than two decades since the pub-
lication of Wolpert’s paper, the use of Stacking in real
applications remains relatively rare, possibly due to
what Wolpert called black art. In other words, there
are several issues that could be considered when using
Stacking, such as the following:

• The algorithms that are used to create the
base-level classifiers and their learning parame-
ters,

• The number of base classifiers,
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• The algorithm used to generate the
meta-classifier and its learning parameters,
and

• The type of attributes that should be used to
create the meta-data.

One of the conclusions of this study is that
there are many contradictory results and that there
is no consensus on which Stacking configuration
is optimal. This conclusion corroborates Wolpert’s
statement regarding the need for prior knowledge to
configure these parameters.

Nevertheless, in recent years, there has been a
trend in the literature toward Stacked Generalization,
which is the use of meta-heuristics, such as genetic
algorithms, ant colonies or artificial bee colonies, to

automatically configure the Stacking system param-
eters. Thus, the Stacking system that is generated is
domain dependent. However, this type of approach
has a higher computational cost than other Stack-
ing approaches because several generations of indi-
viduals must be evaluated to obtain the final system.
Even if this task is not crucial for a large number of
domains, given that most classification tasks do not
require real-time operation, it could be a relevant issue
in the era of big data. However, it would be interesting
to explore adding incremental capabilities to Stacking
in future research.

Although Stacking is applied to real-world prob-
lems less frequently than other ensemble methods,
such as Bagging or Boosting, the exponential growth
of data as well as the diversity of these data continues
to make Stacking an interesting alternative for gener-
ating ensembles.
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