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Abstract

Background: It has been found that microRNAs (miRNAs) can function as a regulatory factor across species. For
example, food-derived plant miRNAs may pass through the gastrointestinal (GI) tract, enter into the plasma and
serum of mammals, and interact with endogenous RNAs to regulate their expression. Although this new type of
regulatory mechanism is not well understood, it provides a fresh look at the relationship between food consumption
and physiology. To investigate this new type of mechanism, we conducted a systematic computational study to
analyze the potential functions of these dietary miRNAs in the human body.

Results: In this paper, we predicted human and plant target genes using RNAhybrid and set some criteria to further
filter them. Then we built the cross-species regulatory network according to the filtered targets, extracted central nodes
by PageRank algorithm and built core modules. We summarized the functions of these modules to three major
categories: ion transport, metabolic process and stress response, and especially some target genes are highly related to
ion transport, polysaccharides and the lipid metabolic process. Through functional analysis, we found that human and
plants have similar functions such as ion transport and stress response, so our study also indicates the existence of a
close link between exogenous plant miRNA targets and digestive/urinary organs.

Conclusions: According to our analysis results, we suggest that the ingestion of these plant miRNAs may have a
functional impact on consuming organisms in a cross-kingdom way, and the dietary habit may affect the physiological
condition at a genetic level. Our findings may be useful for discovering cross-species regulatory mechanism in further
study.
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Background
As a novel mechanism of coevolution, cross-kingdom in-
teractions have recently been discovered in many studies
[1–3]. Cell communication can cross species through
transmitting signals such as hormones, cytokines and
small RNAs (sRNAs) [1]. For instance, Pseudomonas
aeruginosais, a symbiotic gram-negative bacterium, can
produce HSL autoinducers to modulate gene expression
in humans [2]. Some of these autoinducers activate
epithelial cells to induce generation of neutrophil

chemotatic factors and then, these migrated factors will
be triggered to produce toxin which are detrimental to
the bacteria [2]. Meanwhile, some hosts’ miRNAs can
also influence these bacteria. miR-451 and let-7i, which
are highly enriched in human HbAS and HbSS erythro-
cytes, can negatively regulate the growth of the malaria
parasite Plasmodium falciparum [4]. Certain Botrytis
cinerea small RNAs (Bc-sRNA), like Bc-siR3.1, can si-
lence Arabidopsis and tomato genes to inhibit their
hosts’ immunity [3]. It is also reported that milk-derived
miRNAs can target infants’ specific transcripts that are
involved in cytokines and immunity [5]. Such a cross-
species communication also exists in virus-host inter-
action. Studies have shown that viruses can utilize the
hosts’ miRNA machinery to produce their own miRNAs,
and further manipulate both virus and host gene ex-
pression [6]. Similarly, a cluster of cellular miRNAs,
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including miR-28, miR-125b, miR-150, miR-223 and
miR-382, target the 3′ ends of HIV-1 mRNAs in cul-
tivated resting CD4+ T cells to affect HIV-1 latency,
and potently inhibit HIV-1 production [7]. Recently,
Zhang et al. [8] reported that the exogenous plant
miRNA, miR168a, which is enriched in rice, could
target the human/mouse low-density lipoprotein receptor
adapter protein 1 (LDLRAP1) mRNA, and inhibit
LDLRAP1 expression in the liver. Further research [9–11]
has also demonstrated that a variety of exogenous plant
RNAs can be found in plasma and serum of mammals
through ingestion.
Though more and more exogenous plant miRNAs are

experimentally detected in the serum and plasma of hu-
man and animals, cross-kingdom regulation of human
gene by plant miRNAs is not well understood. It is un-
clear how exogenous miRNAs evade the RNases and
phagocytosis, and maintain stable structures and activity
in a low-pH environment when passing through the
mammalian gastrointestinal tract to reach the target
organs. However, all the above evidence suggests that
dietary miRNAs might remain active to regulate the
ingesters’ specific genes. Although a number of experi-
mental studies have demonstrated the discoveries of
cross-species miRNA regulation, the effect of this event
and the underlying mechanism are still unclear. Due to
the complexity of sRNAs-mRNAs regulations, current
experimental studies have some limitations in filling the
gaps of those mechanisms. Hence, we carried out a com-
putational study to exploit the functions and effects of
plant-mammal cross-kingdom regulations, given the as-
sumption that exogenous miRNAs exist in plasma and
serum of mammals. For this purpose, we systematically
predicted the targets of the documented cross-species
miRNAs, and we conducted function enrichment ana-
lysis of the target genes in both humans and plants, by
which we could explore the gene sets’ shared functions,
such as similar pathways, regulators, or related diseases.
In particular, we gathered 25 plant miRNAs, which have
been detected in the serum and plasma of human and
animals. We collected the entire human mRNAs 3′UTR
regions from the UTRdb [12] and predicted the targets
of the 25 plant miRNAs from these regions. Interest-
ingly, we found that our predicted cross-species targets
might have a close association with the digestive, urinary
organs and the daily human metabolic Gene Ontology
(GO) process. In order to better understand the func-
tions of the above 25 miRNAs, we also evaluated their
targets in plants as a reference. Due to lack of experi-
mental validations on targets and high-quality gene
function annotations for common food crops, we used
Arabidopsis thaliana for plant target prediction and
functional analyses. We found the Arabidopsis targets
share some functional similarity to human targets. Our

study might provide some useful hypotheses for discov-
ering the cross-species regulatory mechanism in future
research.

Results
Target prediction on human and Arabidopsis for
25 miRNAs
Due to the limitation of existing studies, it is difficult to
exactly define the matching model between plant
miRNAs and human targets. Given the notion that most
mature miRNAs act as the RNA interference (RNAi)
mechanism by binding to certain sites on target mRNAs
in both plants and animals [13], we took a basic target
prediction approach to retain the maximum potential
targets on humans by using RNAHybrid [14] (see
Methods). Meanwhile, we used the same protocol to
predict the miRNAs’ targets in Arabidopsis thaliana for
comparative analysis and then, we achieved an initial
dataset with nearly 380,000 possible human targets and
5700 Arabidopsis targets. After a screening process
conducted by selecting filtering parameters regarding
targeting attributes, such as the minimum free energy,
p-value, the length of bulge and loop and so on, finally
about 3000 human and 1800 plant targets were selected
for further study.

Predicted target validation on Arabidopsis
In order to verify the reliability of our target prediction
method, we collected 170 validated Arabidopsis tar-
gets of these 25 miRNAs from TAIR [15] and PMRD
[16]. The results of the Arabidopsis target prediction
not only showed a high consistency but also shared
the exact same binding regions (coding DNA se-
quence (CDS) or 3′UTR) with validated targets. Out
of 170 validate targets, 135 (81.8 %) ranked within
the top 50 of each miRNA. More strikingly, 123 out
of 170 validated targets ranked in the top ten among
the predicted targets. For example, miR156 and
miR157 are from the same family, which mainly tar-
get SQUAMOSA-promoter binding protein-like (SPL)
genes’ coding sequence in Arabidopsis thaliana, ex-
cept for SPL3, 4, 5 located in the 3′UTR [17, 18]. It
is reported that members of a plant miRNA gene
family often share high sequence similarity and the
target site [19]. As shown in Table 1, not only the fil-
tered target genes and the target regions are consist-
ent with this report, but also all validated targets
rank on top of predicted targets.
We examined whether the validated genes exist in the

original mRNA dataset, the primary predicted target set
by RNAHybrid, and the refined targets after screening.
We also listed the rank of each validated target in our
refined target set, which is sorted by minimum free en-
ergy (MFE) and p-value.
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Reconstruction of cross-species regulatory network
We extracted experimentally verified interactions and
signaling networks/pathways for our 531 filtered targets
(see Additional file 1) using GeneMania [20], and then
created a primary regulatory/interaction network con-
taining 782 genes and 2444 interactions in total (Fig. 1).
The PageRank algorithm was adopted to assign

weights to the 531 nodes and thereby measure their im-
portance. The results were convergent after 25 iterations
(Additional file 2: Figure S1), when the perturbation of
the weights could be controlled within 0.005. Then, we
selected the top 15 nodes as the bridge genes to recon-
struct the initial network by extracting modules. We ex-
tracted 11 modules by taking the bridge genes as the
central nodes to decompose the whole network, which
can be regarded as a critical link in the biological
network.

Three functional categories of modules
In our study, functional enrichment analysis was applied
to the above modules individually using Mosaic and
NOA Cytoscape apps [21, 22] and DAVID [23], and we
found seven modules highly enriched in certain func-
tions. These modules could be classified into three
functional categories: 1) Transport: ion transport and
homeostasis process, 2) Other metabolic process: macro-
molecule biosynthetic and metabolic process and 3)
Stress response: immune and stress response (Table 2).
Major commonly enriched biological processes functions
of the main modules are shown in Fig. 2 (M9, M10 and
M11 are excluded, since none of the listed functions are
enriched in these modules). The ion transportation and
homeostasis process includes chemical, di- and tri-valent
inorganic compounds (such as boron and sulfur), which
are often enriched in fruits, leafy vegetables, and cereal.

Table 1 miR156 target validation

Validated target
genes

Accession
number

mRNA Primary targets Refined CDS
targets

Rank Refined 3′UTR
targets

Rank

CDS 3′UTR CDS 3′UTR

SPL2 AT5G43270 Y Y Y N Y 6 N

SPL3 AT2G33810 Y Y N Y N - Y 1

SPL4 AT1G53160 Y Y N Y N - Y 2

SPL5 AT3G15270 Y Y N Y N - Y 3

SPL6 AT1G69170 Y Y Y N Y 5 N

SPL9 AT2G42200 Y Y Y N Y 2 N

SPL10 AT1G27370 Y Y Y N Y 4 N

SPL11 AT1G27360 Y Y Y N Y 3 N

SPL13-1 AT5G50570 Y Y Y N Y 7 N

SPL13 AT5G50670 Y Y Y N Y 8 N

SPL15 AT3G57920 Y Y Y N Y 1 N

Fig. 1 Integrated network of human target genes. The nodes with bigger size represent the bridge genes (AXIN1, SRM, DENND1A, ACTN4,
C3orf18, TMED1, KAT5, and SYNGR1) in the reconstructed network
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Table 2 Parts of the functions of selected modules

Function Specific process BP accession number Module

Transport iron ion homeostasis GO:0055072 M1, M3

calcium ion transport GO:0006816 M6

vesicle-mediated transport GO:0016192 M8

vesicle targeting, to, from or within Golgi GO:0048199 M8

vesicle targeting GO:0006903 M8

regulation of sodium ion transport GO:0002028 M8

Other metabolic process glycerolipid biosynthetic process GO:0045017 M4

biogenic amine metabolic process GO:0006576 M4

alcohol metabolic process GO:0006066 M4

cellular polysaccharide biosynthetic process GO:0033692 M4

polyamine metabolic process GO:0006595 M5

fatty acid biosynthetic process GO:0006633 M7

fatty acid metabolic process GO:0006631 M7

Stress response innate immune response GO:0045087 M1, M2

inflammatory response GO:0006954 M1, M2

response to molecule of bacterial origin GO:0002237 M2

response to wounding GO:0009611 M2

response to chemical stimulus GO:0042221 M2,M7

leukocyte chemotaxis involved in inflammatory response GO:0002232 M2

response to ethanol GO:0045471 M4

response to heat GO:0009408 M7

response to temperature stimulus GO:0009266 M7, M8

Fig. 2 Heatmap of common biological process functions in different modules
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Metal cations such as iron, calcium, and sodium are also
present. All of these compounds are closely linked with
dietary habits. Meanwhile, we found a tight connection
between the predicted human tissue targets as they re-
late to fatty acids, amino acids, alcohol, glycerolipids,
cellular polysaccharide, and oxoacid metabolic processes.
For the response process, one is the metal ion, inorganic
ion and the nutrient substance related response, and the
other is a type of defense response to the external stimu-
lus, such as virus, bacterium and wounding. For the im-
mune process, the identified modules show positive
regulation of leukocyte and lymphocyte activation with
response to the immune effector process as well as in-
flammation. M6 is related to vesicle targeting and trans-
portation as well, which has been regarded as a carrier
of the uptake miRNAs in the human body.

Functional analysis of tissue-specific predicted human
targets
The range of the protein expression level varies greatly
in different tissues; thus, we took tissue specificity as a
basis to measure our targets, which could largely reduce
the false positive rate of the predicted results. To investi-
gate the relationship between our cross-species targets
and the eight tissues (brain, heart, kidney, liver, lung,
spleen, stomach, and small intestine), we categorized our
target genes into three levels, the ubiquitous level (house
keeping genes, HKG), for which genes would express in
most of the tissues; highly expressed level, meaning
these genes would have a high expression level in several
but not all tissues; and the tissue-specific level, which
can be specifically expressed within one certain tissue.
To characterize the set of three-level expressed genes
that we had identified, we conducted functional enrich-
ment analysis, and for the third level we collected veri-
fied specific gene sets of the eight tissues from TisGed
[24] as the background. The protein products of the first
level expressed genes were more likely to be involved in
the actin filament-based process, ion transport and sig-
naling (calcium, sulfate, and organic anion), metabolism
process such as those found in macromolecule (polysac-
charide, carbohydrate, alcohol, and ATP) biosynthetic
and metabolic processes, general cell morphogenesis
and apoptosis processes, and vesicles localization and
targeting.
As shown in Fig. 3, genes with a specific tissue expres-

sion level in the brain and heart were more likely to be
connected with general cell development as well as the
neurological system related process, and cardiac muscle
tissue morphogenesis. While the second and third level
targets in kidney, liver, and spleen were often involved in
specialized biological processes, like metal ion transpor-
tation, homeostasis and response in kidney, immune sys-
tem process and wounding response in spleen, alcohol

and macromolecule metabolic processes, and insulin sig-
naling pathway, as well as the catabolic process in the
liver, which suggests a high enrichment both in the di-
gestive and urinary system, and also indicates a close
link between our targets and these systems.

Functional similarity: ion transport and stress response
between Arabidopsis and human
As Arabidopsis and human are two very different spe-
cies, there is no established method to compare gene
functions of them and no single cross-species platform
or algorithm can perform the pathway analysis on both
Arabidopsis and human. The “functions” mentioned in
this paper refers protein functions annotated in Gene
Ontology. According to our enrichment analysis results
(Additional files 3, 4 and 5), ion transport and stress re-
sponse exist in most modules from both Arabidopsis
and human. In plants, there are two ways to acquire iron
ions: based on iron reduction and iron chelation. Arabi-
dopsis activates the reduction-based strategy of Fe
uptake upon Fe deficiency, and this process is partly in-
duced by an acidification of the root hair zone through
the extrusion of protons to solubilize Fe chelates; hence,
this iron ion transport pathway can regulate the growth
of root. Also, some transporters are expressed in shoots
and seedlings. Fe distributes in three main organelles in
cell: vacuole, chloroplast and mitochondria, and the iron
ion transport process can influence mitochondrial res-
piration and chloroplast photosynthesis [25]. In Arabi-
dopsis, the Fe uptake pathway appears to be regulated at
the transcriptional and post-transcriptional level. At the
transcriptional level, the transcription of IRT1genes is
strongly up-regulated, IRT1 is the founding member of
the large ZIP family [26], and our predicted target genes
involved in metal ion transport include ZIP family gene.
Two genes AtNRAMP3 and AtNRAMP4 are also in-
volved in this pathway [27]. In human, extracellular Fe3+

is reduced to the more soluble Fe2+ by reductases em-
bedded in the cell’s plasma membrane. The Fe2+ gener-
ated then becomes the substrate for two different uptake
systems, a high-affinity system expressed in iron-limited
cells and a low-affinity system active in iron-replete
cells. The high-affinity system is just the same as in
Arabidopsis. In the human iron transport pathway,
some genes involved may influence organs such as
livers and so on [25]. One mainly gene is NRAMP2
[28], and AtNRAMPs show homology to the NRAMP
family [27]. We find a predicted target gene FER in-
volved in human iron transport is also involved in the
plant iron transport pathway according to our predic-
tion result.
Plants and animals both suffer from external stimuli

and pressure all the time, which helps them to con-
stantly adapt to environmental stressors by improving
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the ability to respond to threats during evolution [29].
By applying the same module extraction and functional
analysis method to our Arabidopsis targets (see
Additional file 3), we found two aspects of stress re-
sponse: 1) response to stimulus, (e.g., probable histone
H2A variant 3), and 2) the more specific defense re-
sponse as exhibited by the protein MOS2 resisting bac-
terium. The putative DNA repair protein RAD23-1
responds to DNA damage with stimulus reactions. The
other defense response could be seen in the pyruvate de-
hydrogenase E1 component subunit alpha-2 and mito-
chondrial protein, which helps to repel salt stress and
osmotic stress. Meanwhile, we found that predicted hu-
man targets could play a prominent role in both the
stress response and immune process related to 106

relevant GO processes, of which 72 pieces are external
response processes, which shows a high similarity to that
of plants. Similarities can be seen in plant responses to
metal ions, inorganic salt and unhealthy nutrient levels
as well as starvation. All of these processes can be com-
pared to biotic and abiotic stresses whose main factors
are water and nutrients. We also found a high rate of ex-
ternal stimulus response in plants including cellular re-
sponses to molecules of bacterial origin, responses to
lipopolysaccharides (LPSs), which are the main compo-
nent of the gram-negative bacteria that can protect them
from chemical attack. Gram-negative bacteria also re-
spond positively to wounding and inflammation. Module
M3/AXIN1 (Axis inhibition protein 1), which is associ-
ated with 26 genes, which involve myeloid leukocyte

6.1%

1.2%
3.7%

6.1%

24.4%

28%

14.6%

1.2%
6.1%

1.2%

7.3%

other
acute phase response
transportation
gene expression and translation
cell general development
regulation of cell proliferation
neuron
cytoskeleton
metabolic process
immune
signal transduction
muscle contraction

brain

8.6%

7.1% 2.9%

12.9%

14.3%
20%

1.4%

15.7%

4.3%

12.9%

heart

11.8%

17.6%

8.8%
20.6%

17.6%

20.6%

2.9%

liver

3.9%

5.3%

10.5%

7.9%

17.1%

17.1%

2.6%

3.9%

27.6%

3.9%

kidney

5.9%

2.2%

8.1%

11.1%

14.1%

25.9%

17%

9.6%

5.9%

spleen

a                                   b

Fig. 3 Function distribution of the high level targets among five tissues. Pie graphs show fractions of cellular Biological Processes (BP) derived
from genes belonging to the second expression level in six human tissues. Names of BP categories are shown at the right. a The BP terms of
brain and heart are more likely to be related with regulation of cell proliferation. b For liver, kidney and spleen, functions related to transportation, the
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mediated immunity, activation of blood coagulation via
a clotting cascade, glucagon secretion, and immune
response-inhibiting signal transduction, which forms the
immune system process.

Discussion
Arabidopsis and human are very different species, and it
is hard to define “functional similarity” between them
according to current computational tools and databases.
We used three most comprehensive function/pathway
databases, GO, KEGG and BioCyc to perform function
enrichment analysis. We understand that most GO
terms present very generic functions, but so far GO is
the most comprehensive functional annotation database
for both Arabidopsis and human. In KEGG database, the
number of pathways for Arabidopsis and human are 133
and 299, and those pathways only covered 4818 and
6997 genes, respectively. Due to the unbalance of anno-
tations between Arabidopsis and human, we cannot
compare involved pathways between them. But accord-
ing to our enrichment analysis results and literature
search, we still find some interesting results, which infer
that the pathways between Arabidopsis and human are
not only common at the generic level, but also have a
similar mechanism in the specific process.
According to our enrichment analysis results, one of

the enriched functions is ion transport (GO: 0006811) in
Arabidopsis and some GO terms about metal ion trans-
port also exist in human, such as iron ion transport
(GO: 0006826). In plants, iron is potentially highly toxic
to cells, and hence, iron homeostasis needs to be tightly
regulated. Similarly, dietary Fe deficiency affects many
human beings on earth, leading to asthenia, increased
sensitivity to diseases, and even death. We predict hu-
man targets using Arabidopsis miRNAs in our research,
and then we find some predicted targets involved in iron
transport process both in human and plant, such as FER.
As we use Arabidopsis miRNAs to predict human tar-
gets, we find a predicted target gene FER involved in hu-
man iron transport, and this gene is also involved in the
plant iron transport pathway.
Plants have to endure various stresses such as drought,

salt, low temperature, etc. These adverse abiotic and bi-
otic environmental factors force plants to develop their
stress response mechanisms through cell signaling, gen-
etic regulatory adaptation, and other defense responses.
The human body can also respond to stresses and exter-
nal stimuli, a state of perceived threat to homeostasis, by
activating the immune system. In our research, we found
that potential cross-species targeted by the exogenous
miRNAs are highly related to the immune system and
stress response process in the human body, such as the
response to chemical stimulus and the defense response
to bacterium. These responses are in the same category

of the genes targeted by miRNAs in native plants. In
other words, the exogenous miRNAs in humans may
mimic the indigenous miRNAs in plants in terms of bio-
logical functions. So far, there exists no connection be-
tween these two response mechanisms. It is reported the
stress response is generally transient because its accom-
panying effects can be harmful in the long term. How-
ever, if these exogenous miRNAs exist in the human
chronically from the daily food consumption, they may
have lasting evolutionary effects on a human population
with similar food sources.
The cross-species regulatory mechanism was not pro-

posed until 2012, and significant discussion (both pro
and con) continues on the validity of this proposal. To
the best of our knowledge—up to now—no validated
method has been developed to predict miRNA targets
across species for the exact binding site. Given the com-
mon mechanism of mature miRNAs:RNAi binding, we
only applied basic target binding principles in our pri-
mary prediction step. Meanwhile, we used the same
method to predict the Arabidopsis targets as a test
benchmark. The significant consistency between our
predicted plant targets and the validated ones for this
benchmark strongly supports the effectiveness of our
method and parameters. Our method tuned using Arabi-
dopsis target validation gives a remarkable reduction of
the noisy points in our data (Additional file 6: Figure S2)
and, hence, provides a valid guidance to explore the new
mechanism of cross-species miRNA targets.

Conclusions
In conclusion, we present a novel computational method
to study the cross-species regulation between human
genes and plant miRNAs. According to the target genes
in both human and Arabidopsis we predicted for the
same 25 miRNAs and the cross-species regulatory net-
work we built, we summarized the functions to several
major categories. From these functions, we found that
there are some similar functions between human and
plant target genes, such as ion transport and stress re-
sponse. These findings may provide a hint of transcrip-
tional regulatory interactions between human and plants
through miRNAs. And it might point a new direction to
understand the biological processes in human body
through the cross-species regulatory mechanism in the
future.

Methods
Plant species selection and original datasets
Related studies have detected miRNAs of Oryza sativa
and Glycine max in animal serum, but we chose
miRNAs in Arabidopsis thaliana for our analyses for the
following reasons. A miRNA family often shares similar
nucleotide sequences among different plant species.
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Arabidopsis is a model organism [30–32], and compared
with other plants, it has more data and annotations. A
total of 25 Arabidopsis miRNA datasets and 35,173
mRNAs were retrieved from the Arabidopsis Informa-
tion Resource (TAIR) [15] and PMRD [16], and 34,619
human 3′UTR were from UTRdb [12]. We observed
that most of these 25 miRNAs widely exist in many
plants with high expression levels (Table 3), which
means that human can easily intake significant quantity
from common plant foods.

Target prediction by RNAhybrid
RNAhybrid [14] was chosen as the target prediction tool
with criteria of “seed region rules” (perfect nucleotide
match at the core sequence that encompassed the
first two to eight bases of the mature miRNA); the
free energy of the hybrid was expected to be within
the range of the authentic miRNA-target pairs, typic-
ally lower than −25 kcal/mol. For Arabidopsis target

prediction, we also applied an additional restriction
on the length of loop and bulge within 5 and 9 nt,
respectively.

Plant target validation
To test the reliability of our targets, we designed a
three-level validation method. First, we checked whether
this validated target existed in our input mRNA dataset;
second, we checked the primarily predicted targets to
ensure the effectiveness of our predicting method; third,
we checked whether it was excluded after the screening
process to evaluate the performance of our screening pa-
rameters. After the three-level test, we ranked the target
by its p-value first, then the MFE, and set a threshold to
include most of the validated targets.

Node weight assignment
According to the connectivity among all the N nodes in
the network, we used the PageRank [33] algorithm to

Table 3 Expression levels of exogenous plant miRNAs in common plant foods

Exogenous miRNAs Brassica napus Glycine max Oryza sativa Sorghum bicolor Solanum lycopersicum Vitis vinifera Zea mays

miR156a √ √ 2.72E+05 3.09E+02 2.98E+03 2.08E+03 1.24E+03

miR156g √ √ 2.72E+05 1.34E+03 NA 1.78E+03 572

miR157a NA NA NA NA NA NA NA

miR157d NA NA NA NA NA NA NA

miR159a NA √ 5.91E+03 966 NA 8.02 6.41E+03

miR160a √ √ 1.32E+03 3.1 75.6 32.7 12.7

miR162a √ √ NA NA NA 1.04E+04 NA

miR164a √ √ 3.99E+03 81.3 1.81E+04 301 88

miR164c √ √ 3.41E+03 22.9 NA 1.24E+04 51.1

miR165a NA NA NA NA NA NA NA

miR166a √ √ 4.03E+04 643 2.92E+05 2.25E+04 8.00E+03

miR167a √ √ 1.51E+04 1.66E+03 1.42E+04 1.34E+03 1.29E+03

miR167d √ √ 1.57E+04 3.02E+03 NA 548 180

miR168a √ √ 3.58E+05 NA √ NA 1.47E+05

miR169a √ √ 8.17E+03 387 47.4 23 318

miR169b √ √ 9.83E+03 120 NA 4.59 58.8

miR169h √ NA NA NA NA 104 NA

miR171a √ √ 3.24E+03 12.3 206 212 √

miR171c √ √ 2.71E+03 NA 85.3 536 17

miR172a √ √ 1.72E+04 6.44E+03 1.27E+04 8.6 73.3

miR172c √ √ 1.48E+04 91.3 NA 3.21E+03 5.28E+03

miR390a √ √ NA NA 2.83E+03 NA 236

miR394a √ √ NA 155 NA 145 56.9

miR397a √ √ 827 NA NA 1.25E+03 NA

miR408 NA NA 790 8.50E+03 NA 1.69E+03 NA

Here the numbers represent the reads per million; “√” means that the miRNA is found in the species but its expression level is unavailable; ‘NA’ means that there
is no evident to support this miRNA
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evaluate each node by constructing an N*N matrix A.
As a famous algorithm used by Google, PageRank has
proved to be a good measurement of the importance of
website pages. If there is a connection between two
nodes, we set a value of one to the corresponding pos-
ition of matrix with all the rest set at zero. Through this
process, we recorded all edges in A. We also used a
1*N-dimensional matrix B0 to store each node’s original
weight, which is designed equally as one. Then, we
multiplied the matrix A and B0 to obtain B iteratively.
After about ten iterations, we obtained a converged
matrix B as the final weight of each node.

Core module selection
According to the relationship between any two nodes,
we took the entire network as an equivalent of an undir-
ected, connected graph G. The core module selection
process is based on the bridge gene v, to extract sub-
graph G’ from G. The bridge genes rank as nodes with
the highest connectivity; thus, we derived the modules
by simply deleting these bridges from G, so the G
graph was changed into 11 separate highly connected
components.

Functional analysis on network and modules
Two Cytoscape apps, Mosaic [21] and NOA [22], were
used to analyze the functional similarity among the dif-
ferent human target sub-networks. The GO biological
process terms were assigned to each gene in the module
using Mosaic, and then all sub-networks were analyzed
together under the “Batch mode” of NOA with the
complete network as the background. In order to control
the type I error rate of multiple hypothesis testing, the
Benjanmini & Hochberg method was employed to adjust
P-values, so that GO terms were considered as statisti-
cally significant in overrepresented functions with
adjusted-P <0.1. The functional heatmap (Fig. 2) was
generated by NOA.
Since NOA app does not have the annotation for

Arabidopsis, in order to compare the functional similar-
ities of modules between Arabidopsis and human, we
performed the functional enrichment analysis on each
detected modules/sub-networks for both Arabidopsis
(Additional file 3) and human (Additional file 4) with
DAVID [23]. The GO biological process terms were
considered to be statistically significant with DAVID’s
default threshold p-value <0.1. Then a web-based tool
CateGOrizer [34] was used for simplifying enriched
functions and grouping them into more generic GO cat-
egories for (Additional file 5). The functional similarity
between Arabidopsis and human was measured by cal-
culating the overlaps of two generic GO categories
obtained from the CateGOrizer.

Additional files

Additional file 1: Supplementary Information. It contains the input of
network construction (Data S1) and verified tissue-specific gene selection
(Data S2). (PDF 132 kb)

Additional file 2: Figure S1. Node weight assignment. (a) Node weight
distribution of all 531 nodes. (b) Weight changes during iterations. The
change was reduced to within 0.003 after 15 iterations. (PDF 8264 kb)

Additional file 3: The technical details and p-values to describe the
enrichment of GO terms for Arabidopsis. (XLS 109 kb)

Additional file 4: The technical details and p-values to describe the
enrichment of GO terms for human. (XLS 96 kb)

Additional file 5: The result of grouping generic GO categories for
Arabidopsis and human individually by CateGOrizer. (XLS 23 kb)

Additional file 6: Figure S2. Comparison between plant and human
target distributions after the filtering process. (a) Original Arabidopsis
targets. (b) Arabidopsis targets after screening. (c) Original Human targets.
(d) Human targets after screening. There is a remarkable reduction of the
noisy points between (a) and (b), and between (c) and (d), which
strongly supports the effectiveness of our method and parameters, and
provides a valid guide that can help explore the mechanism of cross-
species miRNA targets. (PDF 8744 kb)
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