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Abstract

Background: While it has been suggested that host microRNAs (miRNAs) may downregulate viral gene expression
as an antiviral defense mechanism, such a mechanism has not been explored in the influenza virus for human flu
studies. As it is difficult to conduct related experiments on humans, computational studies can provide some
insight. Although many computational tools have been designed for miRNA target prediction, there is a need for
cross-species prediction, especially for predicting viral targets of human miRNAs. However, finding putative human
miRNAs targeting influenza virus genome is still challenging.

Results: We developed machine-learning features and conducted comprehensive data training for predicting
interactions between H1N1 genome segments and host miRNA. We defined our seed region as the first ten
nucleotides from the 5’ end of the miRNA to the 3’ end of the miRNA and integrated various features including
the number of consecutive matching bases in the seed region of 10 bases, a triplet feature in seed regions,
thermodynamic energy, penalty of bulges and wobbles at binding sites, and the secondary structure of viral RNA
for the prediction.

Conclusions: Compared to general predictive models, our model fully takes into account the conservation
patterns and features of viral RNA secondary structures, and greatly improves the prediction accuracy. Our model
identified some key miRNAs including hsa-miR-489, hsa-miR-325, hsa-miR-876-3p and hsa-miR-2117, which target
HA, PB2, MP and NS of H1N1, respectively. Our study provided an interesting hypothesis concerning the miRNA-
based antiviral defense mechanism against influenza virus in human, i.e., the binding between human miRNA and
viral RNAs may not result in gene silencing but rather may block the viral RNA replication.

Background
Influenza is an infectious disease caused by RNA influenza
viruses in the family orthomyxoviridae. Influenza viruses
are classified into three types: A, B and C. Influenza A
infects a wide variety of avian and mammalian species
including humans, which can be subdivided into different
serotypes based on the antibody response to these viruses

[1]. Influenza B virus almost exclusively infects humans,
and it has only one known subtype and is less common
than influenza A. Influenza C virus can cause a mild upper
respiratory disease [2,3], but it is rare. Influenza A and B
genomes each contain eight segments of single-stranded
RNA, and C contains seven segments of single-stranded
RNA. Each RNA segment encodes one or two proteins
[4]. Take influenza A for example; the eight RNA seg-
ments are HA (hemagglutinin), NA (neuraminidase), NP
(nucleoprotein), M (matrix protein), NS (nonstructural
protein), PA (polymerase A), PB1 (polymerase B1), and
PB2 (polymerase B2), altogether coding 11 proteins.
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Influenza virus genome is prone to gene reassortment.
The novel influenza, A/H1N1, is a mixed strain [5] first
reported in Mexico and the United States (March 2009),
and soon spread over several other nations in 2009.
Influenza viruses only replicate within living cells, and

they deliver their genes and accessory proteins into the
host cells [6]. Host cells do not passively accept viral infec-
tion, but trigger resistance and neutralization actively.
Studying the interaction between viruses and host cells is
important for understanding the mechanism of pathogeni-
city so as to search for an appropriate anti-virus method.
Recent studies demonstrate miRNAs encoded by viruses
or humans may exert an important influence on the inter-
action between virus and host [7,8].
MiRNAs are small noncoding and endogenous RNAs,

~22 nucleotides in length, and have been discovered in a
variety of organisms. MiRNAs play important roles in
many biological processes such as development and apop-
tosis. They establish cell lineage by targeting message
RNA (mRNAs) that can direct the RNA-induced silencing
complex (RISC) to downregulate gene expression by either
mRNA cleavage or translational repression [9]. If comple-
mentarities between 3’ untranslated region (UTR) of the
mRNA and the miRNA (especially between nucleotides 2-
7, the so-called seed region) [10] is sufficient, the miRNA

can result in mRNA cleavage; however, if complementari-
ties are insufficient, it may repress translation. Regulatory
effects of miRNAs on virus replication and pathogenicity
have been studied. Among the effects, some studies
showed the binding mode between human-encoded miR-
NAs and viruses. For example, a transcript in human
foamy virus (PFV) can be used as the target site of
human-encoded miR-32 [11]; hepatitis C virus (HCV)
replication is regulated by miR-199a* that may serve as a
novel antiviral therapy [12]; and human-encoded miRNAs
can target crucial HIV-1 genes [13]. Human miR-326 is
physiologically functional in moderating HIV-1 replication
in human cells [14]. Heiss et al. (1986) noted in the
Journal of Virology that “In the developing CNS of highly
permissive suckling mice, the miRNA-targeted viruses can
revert to a neurovirulent phenotype by accumulating
deletions or mutations within the miRNA target sequence”
[15]. Figure 1 shows the process of host miRNA ‘hsa-miR-
229a’ targeting an HIV-1 transcript. Scaria et al. (2006)
also found that human-encoded miRNAs could target cri-
tical genes involved in the pathogenesis and tropism of
influenza virus A/H5N1, and the target regions in the
respective genes were found to be conserved across differ-
ent viral strains [16]. Cellular miRNAs expression and its
relation to virulence in influenza expression were reported

Figure 1 Process of has2miR229a targeting HIV21 Sequence.
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in [17]. However, no detailed analysis has been conducted
for the interactions between human miRNA and influenza
virus genome. The direct role of miRNAs in influenza and
related mechanisms has not been well established. Hence,
it is of great significance to study host-virus interactions
mediated by miRNAs in flu.
Unlike many plant miRNA targets, which are almost

completely complementary in open reading frames (ORFs)
[18], the binding between animal miRNAs and their target
sites has incomplete complementarity in base-pairing, and
binding sites can be found in 3’ UTRs, 5’ UTRs and coding
regions of target genes [19-21]. Experimental miRNA-
recognition methods are laborious and time-consuming;
hence these methods cannot achieve high throughput cur-
rently. Therefore, numerous miRNA target prediction
methods have been proposed such as miRanda [22], Tar-
getScan(S) [23], RNA22 [24], Diana-MicroT [25], PicTar
[26], RNAhybrid [27], and miTarget [28], based on seed
complementarity, thermodynamics, conservation, Bayesian
statistics, SVM, HMM, artificial neural networks, etc.
However, available methods suffer from the lack of gold
standards of negative examples to build an effective classi-
fier and can hardly make a good balance between high
sensitivity and high specificity, which leads to high false
positive and false negative rates. Current prediction algo-
rithms lack consistency when compared to each other,
and none of the existing prediction tools have been able to
incorporate comprehensive features efficiently. While
computational analysis of miRNA-mediated antiviral
defense has been conducted [29], no available software
tool to predict cross-species miRNA-mediation mechan-
ism has been available until now. It is likely that some spe-
cial characteristics exist for binding between human
miRNA and viral RNA. In particular, influenza viruses
mostly have negative-sense single-strand RNAs. In this
study, we focused on interaction between human miRNA
and viral negative-sense RNAs, which may prevent the
viral RNAs from replication and possibly lead to RNA
degradation. Such a binding may have different features
from interaction between human miRNA and human
mRNA, which results in gene silencing through transla-
tional repression or target degradation.
In this study, we developed an influenza virus-based

multi-level scoring neural network model to predict
human miRNAs that may target influenza RNAs. Our
model combines viral genome characteristics, RNA sec-
ondary structure characteristics, genetic conservative char-
acteristics, and interaction features at seed regions, which
work together to greatly improve prediction accuracy and
search speed. A hypothesis is proposed for the interaction
between the human miRNA and viral negative-sense
RNA. Our study may help find a new approach for the
prevention and control of the influenza virus.

Results
In this section we conducted seed region feature analyses
and compared our method’s performance with the other
five prevailing prediction algorithms, using a completely
independent test data set.

10-nt sequence base-pairing value in seed region of the
binding site
MiRNA targets commonly have at least one region that
has Watson-Crick pairing to the 5’ part of miRNA. Nor-
mally miRNA seed is defined as the consecutive 7 to 8-nt
sequence starting from either the first or second base at
the 5’ end of an miRNA. Seed region has the most impor-
tant features for target recognition. In order to get better
results for predicting H1N1 RNA targets from human
microRNAs, we conducted base-pairing comparative stu-
dies between four segments of H1N1-2009 from NCBI
and human miRNAs from miRBase. For H1N1 genomes,
results showed that the consecutive 10-nt sequence pat-
tern is better than the 7, 8 or 9-nt sequence pattern that is
frequently observed in the binding between human
mRNA and human miRNA. So our prediction model
improves traditional statistical seed region features at the
binding site and defines the viral RNA seed region with
the consecutive 10-nt sequence (seed sequence of miRNA
also corresponds to the consecutive 10-nt sequence
accordingly). Typically, the region sequence we refer to is
10-nt from the 5’ end of the miRNA. Each base position is
a vector of four according to the order of A, C, G, U for
the Boolean type representation. For example, if the base
symbol bit is G, then the corresponding bit in the base of
the third vector element is set to 1, and the rest is marked
as 0. Hence, the 10-nt seed region of the miRNA sequence
is encoded into a 40-dimensional vector. An example is
shown in Figure 2.

N3 statistical information in seed region
The complexity of miRNA-RNA interactions may lead
to an inefficient search for miRNA-RNA sequence
matching in the miRNA target recognition, as the cur-
rent search is often based on minimum free energy
(MFE) of miRNA:target duplexes. To further reduce
the search time, we developed a statistical energy for-
mula for constructing the triplet (N3) feature to repre-
sent local MFE concept at the seed region. N3 is
produced by consecutive three-base pairings between
miRNA and RNA in the seed region. This is a novel
feature of miRNA-target base pairing, in contrast to
traditional thermodynamic parameters. There are 216
types of triplet base-pairings according to their MFEs.
First, based on the statistical energy formula and
experimental data, we calculated their MFEs and
mapped the results into discrete consecutive integers
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from 1 to 27 using the formula Mapping Function:
SCORE(x) = [MFE(x) ∗ (−1)/6.7 ∗ 27 + 1], where x ∈ [1, 216]
and if MFE(x) ≥ 0, MFE(x) = 0. The MFE of a triplet is
calculated based on dimer thermodynamic parameters.
The SCORE(x) discretizes triplet base-pairing scores,
as shown in Additional File 1. As an example, with
regard to the seed region instance in Figure 2, the tri-
plet feature value is (18, 13, 12, 11, 11, 0, 0, 0) with 8
dimensions.

Gap penalty function calculation of binding sites
Because of the limited complementarity between miR-
NAs and their targets, mismatch and gaps between
sequences should be considered. Here, mismatches are
known as wobbles and bugles in the seed region, based
on its upstream or downstream activity. A wobble can
be considered as a special bugle. Our method extracts
information including the number of bulges and size of
every bulge. We developed an empirical gap penalty
score as shown in Table 1. The basic idea is to impose
more penalty for large gaps and gaps close to the center
of miRNA.

Feature analysis
We compared the traditional feature selection method
(defined as the control model) and our improved feature
selection method (defined as new model) by a 10-fold
cross-validation. Figures 3-6 illustrate one of 10 test
cases in the 10-fold cross-validation tests. The criteria
for comparing between the control model and the new

model include: MSE (Mean Squared Error, which refers
to the expected difference square between the estimated
value and the true value) and correlation analysis. The
figures demonstrate that the new feature extraction
method is a significant improvement over the traditional
feature selection method.
In Figure 3, the model MSE trend shows that the new

model converged slower, but reached a lower MSE value
than the control model. This indicates that the introduc-
tion of new features affects convergence of the model.
More features used in the new model may result in
longer convergence iterations, but better results. Figure 4
shows after adding new features, the correlation between
the objective values and the model output values
improves significantly in both test and validation sets
over the control models.
It is worth mentioning that the new target genes fea-

ture an extraction method, which can be easily inte-
grated into the traditional target gene model without
significant additional computing time.

Performance on completely independent test data
In order to evaluate the performance of the classifier,
three objective functions including sensitivity
SN = TP/ (TP + FN), specificity SP = TN/ (TN + FP),
Matthew’s correlation coefficient

MCC =
TP∗TN − FP∗FN

√
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

and

average class-wise accuracy
ACA = (TP + FN)/(TP + FN)/(FP + TP + TN + FN) are
computed. Here, SN and SP control false negatives and
false positives, respectively, and MCC measures the bal-
ance of the classification results. We chose two inde-
pendent test data sets for our performance assessment.
First we selected 200 groups’ positive target genes and
1000 groups’ negative target genes using TarBase as our
test data set. All the chosen data had no more than
50% sequence identity from any of our training data
sets. Then we chose a subset which consisted of 137
positive and 67 negative examples to test our model
again. Both tests showed better results for our method

Figure 2 Base-bit representation of one sequence. Each base of a miRNA sequence is represented by a 4-dimentioanl vector, indicating the
presence of A, C, G, and U, respectively. The miRNA seed position shown in the figure is represented by
(0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,1).

Table 1 Gap penalty of bulge in relationship with gap
size and starting position

Starting position of bulge (from 5’ end of miRNA)

1 2 3 4 5 >5

gap size 1 -1 -1 -2 -2 -5 -20

2 -1 -1 -2 -2 -5 -20

3 -2 -2 -3 -3 -8 -25

4 -2 -2 -3 -3 -8 -25

>4 -5 -5 -6 -6 -10 -40
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than others, as shown in Table 2. In the first test, our
model provided MCC (0.645) and ACA (0.8), and in the
second test, MCC (0.6553) and ACA (0.8479).

Predicted human miRNAs that regulate the influenza
virus genome
Using our model, hsa-miR-489, hsa-miR-325, hsa-miR-
876-3p and hsa-miR-2117 are predicted to target HA,

PB2, MP and NS of influenza A, respectively. Table 3 and
Figure 7 provide start positions and binding energies, as
well as the modes of binding pairs. The number of binding
sites of hsa-miR-489 is the least, and only the seed region
was paired. Because the binding energy of hsa-miR-325
and PB2 was the lowest, their binding was the most stable.
Figure 8 shows the distribution of complementary sites.
Figure 9 shows the impact of new features. The miRNAs

Figure 3 Comparison of the MSE curve trend of control model (left) and new model (right). In both graphs, the horizontal axis indicates
the number of iterations during training; the vertical axis shows the model error (MSE) values. Blue curve represents the MSE of the training
model in the neural network building process, green curve indicates the MSE trend under data cross-validation; red curve represents the test
data (sampled from the neural network training set by removing the extraordinarily good or poor models as outliers).

Figure 4 Comparison of data dependence analysis for control model (left) and new model (right). In both graphs, the horizontal axis
indicates the objective output value of the model training; the vertical axis shows the model output values. Blue curve represents the current
training model data correlation in the process of neural network building; green curve represents the data correlation under cross-validation
data, red curve is the corresponding model correlation with test data (sampled from the neural network training set by removing the
extraordinarily good or poor models as outliers).
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predicted with new features and were significantly differ-
ent from those predicted by traditional features. Using
new features only had a similar result to the prediction
from combined features, but predicted fewer miRNAs.
This showed the new features to be dominant in the com-
bined prediction, but the inclusion of traditional features
helped obtain more putative miRNA-target candidates.
The most complementary sites were in the PB2 segment

and the least were in the NS segment. This means PB2
may be the most important segment for the binding of
human encoded miRNAs and H1N1 segments.

Discussion
In this section we discuss parameter selection rules and
seed region features. We also discuss our key finding
and its potential biological implication.

Figure 5 Comparison of classification between the control model (left) and the new model (right). In both graphs, the horizontal axis
indicates the data sample numbers, and the vertical axis is classification value. Blue indicates the actual output value of the model, red indicates
the objective (target) value.

Figure 6 Comparison of test set correlation analysis of control model (left) and new model (right). In both graphs, the horizontal axis
indicates the output objective (target) values, and the vertical axis is the output value of model.
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H1N1 segments and genome sequences selection
Given the differences in quantities, regions, acquisition
methods and data completeness of H1N1 genome
sequences in NCBI (http://www.ncbi.nlm.nih.gov/), we
could not choose all possible H1N1 genome sequences.
It would have led to biases in the result. For H1N1 gen-
ome sequences, only a certain number of sequences of
each segment per year from the past 13 years (2000-
2012) were selected as non-redundant representatives.
In order to identify what number of sequences was the
most suitable, we chose 10, 20, 30, 40, 50, 70, 90, 100,
and 200 sequences per year to perform comparative
analyses. The result indicated that 50 sequences were
the best [final data sets selected from this process are in
Additional Files 2-10.
It has not been proven that human miRNAs could

play any direct role in any of the segments of influenza
genome. To simplify our research, we chose HA, PB2,
MP and NS segments of H1N1 from 2000 to 2012 for
our study, since these four influenza virus proteins play
essential roles in influenza virus’s pathogenicity and
infectiousness [30-34]. For example, the strength of the
virulence is directly linked to whether HA can be
cleaved to HA1 and HA2. NS plays a regulatory role in
viral transcription and replication process. PB2 generates
the primer required for viral RNA transcription. MP
contains matrix proteins and coding proteins (m1, m2,
and m3).

H1N1 segments secondary structure and MFE calculation
simplification
In our model we used the different scores for the test to
determine which step had significant effect on the result.
The test confirmed that RNA secondary structure is an
important factor for discovering human encoded miR-
NAs that regulate the influenza virus genome. This is

consistent with our previous study [35], which showed
that local RNA structure had a much stronger effect
than a global one on the miRNA-RNA binding.

Cross-hybridized binding
In this study, cross-hybridized binding was considered.
We assumed that when an miRNA targets many seg-
ments, it loses specificity and its biological effect to inhi-
bit viral RNA will be substantially reduced. Hence, for
one miRNA targeting multiple RNAs, we lowered the
miRNA’s score through dividing by the number of tar-
gets. For multiple miRNAs targeting one RNA, we
assumed they added more effectiveness for inhibiting
the viral RNA. This might be a mechanism of human
endogenous miRNAs to improve strengths in targeting
influenza virus. So we took multiple miRNAs targeting
one RNA into account in our study.

Biological implication
Our result showed that the predicted binding mode
between human miRNA and viral negative-sense single-
strand RNAs are significantly different from the
observed binding mode between human miRNA and
human mRNA. In particular, the former has a consecu-
tive 10-nt fully complementary sequence pattern while
the latter has 7, 8 or 9-nt complementary sequence pat-
tern. The A:U and G:C ratio in seed, up-stream and
down-stream regions, are also different between the two
cases. This indicates that the binding between human
miRNA and viral RNAs may be much tighter than that
between human miRNA and human mRNA. This also
suggests that the binding between human miRNA and
viral RNAs may not result in gene silencing through
translational repression or target degradation, but rather
may prevent the viral RNA replication by forming dou-
ble-strand RNAs between human miRNA and viral
negative-sense single-strand RNAs.

Conclusion
In conclusion, we developed a novel model for cross-
species miRNA target prediction based on machine
learning approach. Compared to general predictive
models, our model fully takes into account the conser-
vation patterns and features of viral RNA secondary
structures, and greatly improves the prediction accuracy.
Using our model, we discovered human encoded miR-
NAs hsa-miR-489, hsa-miR-325, hsa-miR-876-3p and
hsa-miR-2117 targeting HA, PB2, MP and NS of influ-
enza A, respectively. This number of candidates was
very small, and thus the results can be used as a basis
for biological reverse genetics test experiments for veri-
fication. Moreover, next-generation sequencing can also
be used to test the effectiveness of our method and our
biological hypothesis. In future work, we will extend

Table 2 A comparison among different methods in their
ACA values

Methods MCC ACA

PITA 0.4023 0.5710

miRANDA 0.2427 0.6242

Diana MicroT 3.0 -0.0089 0.5236

TargetScan 0.3769 0.6430

Our Algorithm 0.6553 0.8479

Table 3 Start position of binding and binding energy

MiRNA Start Position of Binding Energy (kcal/mol)

hsa-miR-489 151 -11.19

hsa-miR-325 1029 -13.72

hsa-miR-876-3p 526 -13.23

hsa-miR-2117 827 -11.74
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our study from the four segments to all eight segments.
Different score’s weight will be considered by adding
more H1N1 segment characteristics.

Materials and methods
Figure 10 shows the workflow of our model in studying
the interactions between human miRNAs and HA, PB2,
MP or NS segments of H1N1. We included novel target
binding site features and conducted comprehensive data
trainings in our target prediction model.

Data preparation
The human miRNA sequences were downloaded from
miRBase [36-38]. The data of this database include the
predicted hairpin portion of miRNA transcript, informa-
tion on the genomic location and mature miRNA
sequences. Mature sequences were used in this study.

The number of mature sequences is 1100 [Additional
File 11]. Each sequence is represented in the FASTA
format, as shown in Table 4 as examples. The sequences
of human encoded miRNAs are numbered. The RNA
segments of Influenza A genome, HA, PB2, MP and NS
were chosen for this study. We chose these four seg-
ments since their data are relatively complete, covering
a significant range of time and geography. 50 sequences
of each segment from the past thirteenyears (2000-2012)
different from our preliminary work’s data set (2000-
2009) were randomly sampled from the NCBI collection.
We obtained a consensus secondary structure using
RNAalifold of the Vienna RNA package (http://rna.tbi.
univie.ac.at/cgi-bin/RNAalifold.cgi) with the default
parameters (new RNAalifold with RIBOSUM scoring;
fold algorithms and basic options: minimum free energy
(MFE) and partition function, and avoiding isolated base

Figure 7 The binding modes of predicted miRNA-RNA pairs. hsa-miR-489, hsa-miR-325, hsa-miR-876-3p and hsa-miR-2117 are predicted to
target HA, PB2, MP and NS of influenza A, respectively.

Zhang et al. BMC Systems Biology 2013, 7(Suppl 2):S3
http://www.biomedcentral.com/1752-0509/7/S2/S3

Page 8 of 14

http://rna.tbi.univie.ac.at/cgi-bin/RNAalifold.cgi
http://rna.tbi.univie.ac.at/cgi-bin/RNAalifold.cgi


pairs). We then aligned all the 50 influenza sequences
using ClustalW2 with the default parameters (ALIN-
MENT: full; SCORE TYPE: percent; NO END GAPS: yes;
ITERATION: none; NUMITER: 1; OUTPUT FORMAT:
aln w/numbers; OUTPUT ORDER: aligned; TREE TYPE:
none; CORRECT DIST: off; IGNORE GAPS: off; CLUS-
TERING: NJ).

Artificial neural network design
An artificial neural network was used for the miRNA tar-
get prediction, with a suitable selection and representation

of the binding site features used as input features. In this
study, in addition to the traditional binding site features,
we proposed three novel features which have been
described.
MiRNA target gene prediction models all employ 3-layer

neural network structure with a single hidden layer input
layer nodes with the number (N) representing characteris-
tics input of the target gene data to be predicted; the num-
ber of hidden layer is 2*N+1, the output layer is single
node; the transfer function from input layer to the middle
hidden layer is TANSIG, the transfer function from

Figure 8 H1N1 genome complementary site profile. The horizontal axis indicates the order number of human encoded miRNA that is
predicted to bind the segment. The vertical axis represents the nucleotide sequence order of a segment.
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middle layer to the output hidden layer is LOGSIG (TAN-
SIG and LOGSIG both are in the MATLAB transfer func-
tion package). The building and testing of comparison
model based on the classification model framework can be
accomplished using the following steps:

1) Sample positive and negative target genes data as
a training model of the data set, from positive target
genes (788 groups) and negative target genes (4000

groups) randomly, with total of 4788 target genes. The
remaining 1200 groups (including 200 positive target
genes and 1000 negative target genes) form a model
test data set.
2) Perform feature selection for model training and
extract selected features accordingly in the form of
vectors, which are applied to the model training.
3) In order to achieve good convergence of the train-
ing, the maximum number of iterations of the neural

Figure 9 Profile of different scores. The four rows of 3-set graphs correspond to HA, PB2, MP and NS, respectively. The three rows show
results with three methods. The first row represents the results using traditional features. The second row represents the results with new
features only. The third row shows the results with the combination of traditional features and the new features. The horizontal axis indicates
the order number of miRNAs and the vertical axis is the position of binding sites. Here, we reordered the miRNA candidates according to their
binding energies.
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network training parameters is set to 2000; the MSE
difference threshold between two iterations is set at
0.005, and other parameters adopt the default settings.
4) Test the current training model by the classifica-
tion accuracy, correlation test, etc.
5) Repeat steps 1) to 4) 10 times and compare
results. Filter out the outlier models that are extraor-
dinarily good (to avoid over-training) and those that
are particularly poor. The remaining models should
be used to measure the test performance.

The training data sets including positive and negative
data can be found in Additional Files 12-17.

N3 statistical information in seed region
Before constructing N3 statistical information table, we
had to set up a sequence cursor to indicate the triple

consecutive elements, as shown in Figure 11. During the
N3 information extraction process in a given sequence,
the sequence cursor moves to the next element position
after processing the current three elements. In order to
move through the whole sequence, the sequence
cursor can be moved up to n − (k − 1) times, where n is
the string length of the sequence, and k represents the k
mer. As for 10 -bit seed region for a triplet, n = 10, k = 3,
and hence sequence cursor can be moved up to 8 posi-
tions. Hence, we can get eight-dimension information by
the triplet representation of a 10-nt seed region. If
sequence alignment generates a gap ("-” represents gap in
this paper), then when the cursor points to a position, it is
treated as a new type of nucleotide element.
Figure 12 shows the basic idea of N3 statistical infor-

mation. Each dotted ellipse includes a triplet, which may
contain gap. We calculated all 216 triplet base-pairings’
MFEs according to Turner (2004) (http://rna.urmc.
rochester.edu/NNDB/ and http://rna.urmc.rochester.
edu/NNDB/turner04/stack.txt).

Build a target gene prediction model based on multi-
feature fusion machine learning
This paper presents an efficient miRNA target predic-
tion approach based on artificial neural networks trained

Figure 10 Workflow of our system.

Table 4 Three of human encoded miRNA sequences used
in this study as examples

miRNA Sequence

>hsa-miR-576-3p MIMAT0004796 AAGAUGUGGAAAAAUUGGAAUC

>hsa-miR-194* MIMAT0004671 CCAGUGGGGCUGCUGUUAUCUG

>hsa-miR-140-5p MIMAT0000431 CAGUGGUUUUACCCUAUGGUAG
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on both positive and negative data as described above.
We ranked all the features including 3-mer matching,
penalty assessment of binding sites and alignment feature
function at binding sites. Through the feature-ranking
test, our new features turned out to be non-redundant
with higher scores than features used in the traditional
methods. Our method can distinguish all six known
types of miRNA-target interactions (7mer1A, 7mer-m8,
8mer, 6mer canonical sites, 3’-supplementary sites, and
3’-compensatory sites).

Discover the candidates using our model
The method proposed in this paper was based on scoring,
and the secondary structure of RNAs were also considered
as an important factor. Viral RNA structure has been
demonstrated to be crucial for the adaptability of viruses
[39]. For this reason, scoring based on secondary structure
was considered in the method. We focused on the bind
sites in the stems of RNA secondary structure. Because

the stem is stable, we believe that if the bind sites are in
the stem region, miRNA will perturb the RNAs more
strongly. The secondary structure of any single sequence
may not be representative; as a result, the consensus
nucleotide sequence was used.
There are three factors to build the score to find the

human miRNA sequences that can regulate influenza
virus genome:

(1) Based on the complementary sites: A sliding win-
dow method is applied to search for complete com-
plementary fragments.
(2) Based on the secondary structure of the comple-
mentary sites: If the nucleotide was in the stem
region, additional reward score is given.
(3) Based on sequence conservation: If nucleotides at
the bind site are conserved or nearly conserved
across virus strands in different years, additional
reward score is given.

The weights of the above three factors were trained
empirically. By combining all score components, we
ranked the composite scores in ascending order. The
miRNA with the highest composite score and the target
subsequence were used. We then used RNAfold of Vienna
RNA package to get its binding energy. If more than one
miRNA had the same score, the one with the lowest bind-
ing energy was used for the final result.
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