

# Reinforcement Learning

Slides based on those used in Berkeley's Al class taught by Dan Klein

# Reinforcement Learning

#### Basic idea:

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards



#### **Grid World**

- The agent lives in a grid
- Walls block the agent's path
- The agent's actions do not always go as planned:
  - 80% of the time, the action North takes the agent North (if there is no wall there)
  - 10% of the time, North takes the agent West; 10% East
  - If there is a wall in the direction the agent would have been taken, the agent stays put
- Small "living" reward each step
- Big rewards come at the end
- Goal: maximize sum of rewards\*





### **Grid Futures**

#### Deterministic Grid World



#### Stochastic Grid World



#### Markov Decision Processes

- An MDP is defined by:
  - A set of states s ∈ S
  - A set of actions a ∈ A
  - A transition function T(s,a,s')
    - Prob that a from s leads to s'
    - i.e., P(s' | s,a)
    - Also called the model
  - A reward function R(s, a, s')
    - Sometimes just R(s) or R(s')
  - A start state (or distribution)
  - Maybe a terminal state
- MDPs are a family of nondeterministic search problems
  - Reinforcement learning: MDPs where we don't know the transition or reward functions





## Keepaway

http://www.cs.utexas.edu/~AustinVilla/sim/ keepaway/swf/learn360.swf

- SATR
- S<sub>0</sub>, S<sub>0</sub>

#### What is Markov about MDPs?

- Andrey Markov (1856-1922)
- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes,
   "Markov" means:



$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$
=

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

## Solving MDPs

- In deterministic single-agent search problems, want an optimal plan, or sequence of actions, from start to a goal
- In an MDP, we want an optimal policy  $\pi^*$ :  $S \to A$ 
  - A policy π gives an action for each state
  - An optimal policy maximizes expected utility if followed
  - Defines a reflex agent

Optimal policy when R(s, a, s') = -0.03 for all non-terminals s



# **Example Optimal Policies**



$$R(s) = -0.01$$



R(s) = -0.4



$$R(s) = -0.03$$



$$R(s) = -2.0$$

#### MDP Search Trees

Each MDP state gives an expectimax-like search tree



### **Utilities of Sequences**

- In order to formalize optimality of a policy, need to understand utilities of sequences of rewards
- Typically consider stationary preferences:

$$[r, r_0, r_1, r_2, \ldots] \succ [r, r'_0, r'_1, r'_2, \ldots]$$
 $\Leftrightarrow$ 
 $[r_0, r_1, r_2, \ldots] \succ [r'_0, r'_1, r'_2, \ldots]$ 

- Theorem: only two ways to define stationary utilities
  - Additive utility:

$$U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots$$

Discounted utility:

$$U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$$

#### Infinite Utilities?!

- Problem: infinite state sequences have infinite rewards
- Solutions:





- Terminate episodes after a fixed T steps (e.g. life)
- Gives nonstationary policies ( $\pi$  depends on time left)
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached
- Discounting: for  $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

Smaller γ means smaller "horizon" – shorter term focus

### Discounting

- Typically discount rewards by γ < 1 each time step
  - Sooner rewards have higher utility than later rewards
  - Also helps the algorithms converge



# Recap: Defining MDPs

- Markov decision processes:
  - States S
  - Start state s<sub>0</sub>
  - Actions A
  - Transitions P(s'|s,a) (or T(s,a,s'))
  - Rewards R(s,a,s') (and discount γ)



- MDP quantities so far:
  - Policy = Choice of action for each state
  - Utility (or return) = sum of discounted rewards

### **Optimal Utilities**

- Fundamental operation: compute the values (optimal expectimax utilities) of states s
- Why? Optimal values define optimal policies!
- Define the value of a state s:
   V\*(s) = expected utility starting in s and acting optimally
- Define the value of a q-state (s,a):
   Q\*(s,a) = expected utility starting in s, taking action a and thereafter acting optimally
- Define the optimal policy:  $\pi^*(s)$  = optimal action from state s



| 3 | 0.812 | 0.868 | 0.912 | +1    |
|---|-------|-------|-------|-------|
| 2 | 0.762 |       | 0.660 | -1    |
| 1 | 0.705 | 0.655 | 0.611 | 0.388 |
|   | 1     | 2     | 3     | 4     |



### The Bellman Equations

Definition of "optimal utility" leads to a simple one-step lookahead relationship amongst optimal utility values:

Optimal rewards = maximize over first action and then follow optimal policy



Formally:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$

## Solving MDPs

- We want to find the optimal policy  $\pi^*$
- Proposal 1: modified expectimax search, starting from each state s:

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') \left[ R(s,a,s') + \gamma V^{*}(s') \right]$$

$$V^*(s) = \max_a Q^*(s, a)$$



# Why Not Search Trees?

Why not solve with expectimax?

#### Problems:

- This tree is usually infinite (why?)
- Same states appear over and over (why?)
- We would search once per state (why?)

#### Idea: Value iteration

- Compute optimal values for all states all at once using successive approximations
- Will be a bottom-up dynamic program similar in cost to memoization
- Do all planning offline, no replanning needed!



#### Value Estimates

- Calculate estimates V<sub>k</sub>\*(s)
  - Not the optimal value of s!
  - The optimal value considering only next k time steps (k rewards)
  - As k → ∞, it approaches the optimal value
- Almost solution: recursion (i.e. expectimax)
- Correct solution: dynamic programming



#### Value Iteration

- Idea:
  - Start with  $V_0^*(s) = 0$ , which we know is right (why?)
  - Given V<sub>i</sub>\*, calculate the values for all states for depth i+1:

$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_i(s') \right]$$

- This is called a value update or Bellman update
- Repeat until convergence
- Theorem: will converge to unique optimal values
  - Basic idea: approximations get refined towards optimal values
  - Policy may converge long before values do

#### Example: Bellman Updates



#### **Example: Value Iteration**



 Information propagates outward from terminal states and eventually all states have correct value estimates

## Convergence\*

- Define the max-norm:  $||U|| = \max_s |U(s)|$
- Theorem: For any two approximations U and V

$$||U^{t+1} - V^{t+1}|| \le \gamma ||U^t - V^t||$$

- I.e. any distinct approximations must get closer to each other, so, in particular, any approximation must get closer to the true U and value iteration converges to a unique, stable, optimal solution
- Theorem:  $||U^{t+1}-U^t||<\epsilon$ ,  $\Rightarrow ||U^{t+1}-U||<2\epsilon\gamma/(1-\gamma)$ 
  - I.e. once the change in our approximation is small, it must also be close to correct

# Practice: Computing Actions

- Which action should we chose from state s:
  - Given optimal values V?

$$\arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

Given optimal q-values Q?

$$\underset{a}{\operatorname{arg\,max}} Q^*(s,a)$$

Lesson: actions are easier to select from Q's!

#### **Utilities for Fixed Policies**

- Another basic operation: compute the utility of a state s under a fix (general non-optimal) policy
- Define the utility of a state s, under a fixed policy π:

 $V^{\pi}(s)$  = expected total discounted rewards (return) starting in s and following  $\pi$ 



Recursive relation (one-step lookahead / Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

#### Value Iteration

- Idea:
  - Start with  $V_0^*(s) = 0$ , which we know is right (why?)
  - Given V<sub>i</sub>\*, calculate the values for all states for depth i+1:

$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_i(s') \right]$$

- This is called a value update or Bellman update
- Repeat until convergence
- Theorem: will converge to unique optimal values
  - Basic idea: approximations get refined towards optimal values
  - Policy may converge long before values do

# Policy Iteration

- Problem with value iteration:
  - Considering all actions each iteration is slow: takes |A| times longer than policy evaluation
  - But policy doesn't change each iteration, time wasted
- Alternative to value iteration:
  - Step 1: Policy evaluation: calculate utilities for a fixed policy (not optimal utilities!) until convergence (fast)
  - Step 2: Policy improvement: update policy using one-step lookahead with resulting converged (but not optimal!) utilities (slow but infrequent)
  - Repeat steps until policy converges
- This is policy iteration
  - It's still optimal!
  - Can converge faster under some conditions

## Policy Iteration

- Policy evaluation: with fixed current policy  $\pi$ , find values with simplified Bellman updates:
  - Iterate until values converge

$$V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[ R(s, \pi_k(s), s') + \gamma V_i^{\pi_k}(s') \right]$$

 Policy improvement: with fixed utilities, find the best action according to one-step look-ahead

$$\pi_{k+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{\pi_k}(s') \right]$$

#### Comparison

- In value iteration:
  - Every pass (or "backup") updates both utilities (explicitly, based on current utilities) and policy (possibly implicitly, based on current policy)
- In policy iteration:
  - Several passes to update utilities with frozen policy
  - Occasional passes to update policies
- Hybrid approaches (asynchronous policy iteration):
  - Any sequences of partial updates to either policy entries or utilities will converge if every state is visited infinitely often

# Reinforcement Learning

- Reinforcement learning:
  - Still assume an MDP:
    - A set of states s ∈ S
    - A set of actions (per state) A
    - A model T(s,a,s')
    - A reward function R(s,a,s')
  - Still looking for a policy  $\pi(s)$
  - New twist: don't know T or R
    - i.e. don't know which states are good or what the actions do
    - Must actually try actions and states out to learn

# Passive Learning

#### Simplified task

- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- You are given a policy π(s)
- Goal: learn the state values
- ... what policy evaluation did

# 

#### In this case:

- Learner "along for the ride"
- No choice about what actions to take
- Just execute the policy and learn from experience
- We'll get to the active case soon
- This is NOT offline planning! You actually take actions in the world and see what happens...

## **Example: Direct Evaluation**

#### Episodes:

$$(1,1)$$
 up -1

$$(1,2)$$
 up -1

$$(1,2)$$
 up -1

$$(3,2)$$
 up -1

$$(3,2)$$
 up -1

(done)

$$(4,3)$$
 exit +100

(done)



$$\gamma = 1, R = -1$$

$$V(2,3) \sim (96 + -103) / 2 = -3.5$$

$$V(3,3) \sim (99 + 97 + -102) / 3 = 31.3$$

#### Recap: Model-Based Policy Evaluation

- Simplified Bellman updates to calculate V for a fixed policy:
  - New V is expected one-step-lookahead using current V
  - Unfortunately, need T and R



$$V_0^{\pi}(s) = 0$$

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

### Model-Based Learning

- Idea:
  - Learn the model empirically through experience
  - Solve for values as if the learned model were correct
- Simple empirical model learning
  - Count outcomes for each s,a
  - Normalize to give estimate of T(s,a,s')
  - Discover R(s,a,s') when we experience (s,a,s')
- Solving the MDP with the learned model
  - Iterative policy evaluation, for example

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

#### Example: Model-Based Learning

#### Episodes:

(1,1) up -1

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(1,3) right -1

(2,3) right -1

(2,3) right -1

(3,3) right -1

(3,3) right -1

(3,2) up -1

(3,2) up -1

(4,2) exit -100

(3,3) right -1

- (done)
- (4,3) exit +100

(done)



T(<3,3>, right, <4,3>) = 1/3

T(<2,3>, right, <3,3>) = 2/2

### Model-Free Learning

Want to compute an expectation weighted by P(x):

$$E[f(x)] = \sum_{x} P(x)f(x)$$

Model-based: estimate P(x) from samples, compute expectation

$$x_i \sim P(x)$$

$$\hat{P}(x) = \text{count}(x)/k$$

$$E[f(x)] \approx \sum_x \hat{P}(x)f(x)$$

Model-free: estimate expectation directly from samples

$$x_i \sim P(x)$$
 
$$E[f(x)] \approx \frac{1}{k} \sum_i f(x_i)$$

Why does this work? Because samples appear with the right frequencies!

### Sample-Based Policy Evaluation?

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

 Who needs T and R? Approximate the expectation with samples (drawn from T!)

$$sample_1 = R(s, \pi(s), s'_1) + \gamma V_i^{\pi}(s'_1)$$
  
 $sample_2 = R(s, \pi(s), s'_2) + \gamma V_i^{\pi}(s'_2)$   
...

$$sample_k = R(s, \pi(s), s'_k) + \gamma V_i^{\pi}(s'_k)$$

$$V_{i+1}^{\pi}(s) \leftarrow \frac{1}{k} \sum_{i} sample_{i}$$

Almost! But we only actually make progress when we move to i+1.

# Temporal-Difference Learning

- Big idea: learn from every experience!
  - Update V(s) each time we experience (s,a,s',r)
  - Likely s' will contribute updates more often



- Temporal difference learning
  - Policy still fixed!
  - Move values toward value of whatever successor occurs: running average!

Sample of V(s): 
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s): 
$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$$

Same update: 
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$

# **Exponential Moving Average**

- Exponential moving average
  - Makes recent samples more important

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

- Forgets about the past (distant past values were wrong anyway)
- Easy to compute from the running average

$$\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$$

Decreasing learning rate can give converging averages

# Example: TD Policy Evaluation

$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[ R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

$$(4,3)$$
 exit +100

(done)

Take  $\gamma$  = 1,  $\alpha$  = 0.5





### Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation
- However, if we want to turn values into a (new) policy, we're sunk:



$$\pi(s) = \arg\max_{a} Q^*(s, a)$$

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') \left[ R(s,a,s') + \gamma V^{*}(s') \right]$$

- Idea: learn Q-values directly
- Makes action selection model-free too!

# **Active Learning**

#### Full reinforcement learning

- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- You can choose any actions you like
- Goal: learn the optimal policy
- ... what value iteration did!



#### In this case:

- Learner makes choices!
- Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! You actually take actions in the world and find out what happens...

### The Story So Far: MDPs and RL

#### Things we know how to do:

- If we know the MDP
  - Compute V\*, Q\*, π\* exactly
  - Evaluate a fixed policy π
- If we don't know the MDP
  - We can estimate the MDP then solve
  - We can estimate V for a fixed policy π
  - We can estimate Q\*(s,a) for the optimal policy while executing an exploration policy

#### **Techniques:**

- Model-based DPs
  - Value and policy Iteration
  - Policy evaluation
- Model-based RL
- Model-free RL:
  - Value learning
  - Q-learning

## Q-Learning

- Q-Learning: sample-based Q-value iteration
- Learn Q\*(s,a) values
  - Receive a sample (s,a,s',r)
  - Consider your old estimate: Q(s, a)
  - Consider your new sample estimate:

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma \max_{a'} Q^{*}(s', a') \right]$$

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

• Incorporate the new estimate into a running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha)[sample]$$

# Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy
  - If you explore enough
  - If you make the learning rate small enough
  - ... but not decrease it too quickly!
  - Basically doesn't matter how you select actions (!)
- Neat property: off-policy learning
  - learn optimal policy without following it (some caveats)





## Exploration / Exploitation

- Several schemes for forcing exploration
  - Simplest random actions (ε greedy)
    - Every time step, flip a coin
    - With probability ε, act randomly
    - With probability 1-ε, act according to current policy
  - Problems with random actions?
    - You do explore the space, but keep thrashing around once learning is done
    - One solution: lower ε over time
    - Another solution: exploration functions

### **Exploration Functions**

#### When to explore

- Random actions: explore a fixed amount
- Better idea: explore areas whose badness is not (yet) established

#### Exploration function

■ Takes a value estimate and a count, and returns an optimistic utility, e.g. f(u,n) = u + k/n (exact form not important)

$$Q_{i+1}(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} Q_i(s', a')$$
$$Q_{i+1}(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} f(Q_i(s', a'), N(s', a'))$$

## Q-Learning

• Q-learning produces tables of q-values:



# Q-Learning

- In realistic situations, we cannot possibly learn about every single state!
  - Too many states to visit them all in training
  - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
  - Learn about some small number of training states from experience
  - Generalize that experience to new, similar states
  - This is a fundamental idea in machine learning, and we'll see it over and over again

## Example: Pacman

Let's say we discover through experience that this state is bad:



Or even this one!







# Feature-Based Representations

- Solution: describe a state using a vector of features
  - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
  - Example features:
    - Distance to closest ghost
    - Distance to closest dot
    - Number of ghosts
    - 1 / (dist to dot)<sup>2</sup>
    - Is Pacman in a tunnel? (0/1)
    - ..... etc.
  - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)



### Linear Feature Functions

Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but be very different in value!

# **Function Approximation**

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Q-learning with linear q-functions:

$$Q(s, a) \leftarrow Q(s, a) + \alpha [error]$$
  
 $w_i \leftarrow w_i + \alpha [error] f_i(s, a)$ 

- Intuitive interpretation:
  - Adjust weights of active features
  - E.g. if something unexpectedly bad happens, disprefer all states with that state's features
- Formal justification: online least squares

## Example: Q-Pacman

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$
 $f_{DOT}(s, \text{NORTH}) = 0.5$ 
 $f_{GST}(s, \text{NORTH}) = 1.0$ 
 $Q(s,a) = +1$ 
 $R(s,a,s') = -500$ 
 $error = -501$ 
 $w_{DOT} \leftarrow 4.0 + \alpha [-501] \ 0.5$ 
 $w_{GST} \leftarrow -1.0 + \alpha [-501] \ 1.0$ 
 $Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$ 





# Policy Search



http://heli.stanford.edu/

# Policy Search

- Problem: often the feature-based policies that work well aren't the ones that approximate V / Q best
  - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
  - We'll see this distinction between modeling and prediction again later in the course
- Solution: learn the policy that maximizes rewards rather than the value that predicts rewards
- This is the idea behind policy search, such as what controlled the upside-down helicopter

## **Policy Search**

#### Simplest policy search:

- Start with an initial linear value function or q-function
- Nudge each feature weight up and down and see if your policy is better than before

#### Problems:

- How do we tell the policy got better?
- Need to run many sample episodes!
- If there are a lot of features, this can be impractical

# Policy Search\*

- Advanced policy search:
  - Write a stochastic (soft) policy:

$$\pi_w(s) \propto e^{\sum_i w_i f_i(s,a)}$$

- Turns out you can efficiently approximate the derivative of the returns with respect to the parameters w (details in the book, but you don't have to know them)
- Take uphill steps, recalculate derivatives, etc.