

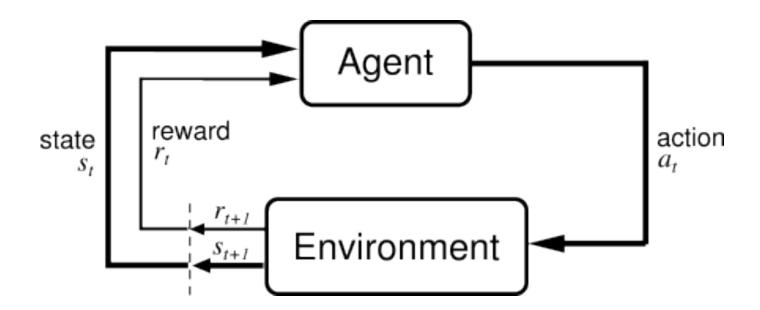
Reinforcement Learning

Slides based on those used in Berkeley's Al class taught by Dan Klein

Reinforcement Learning

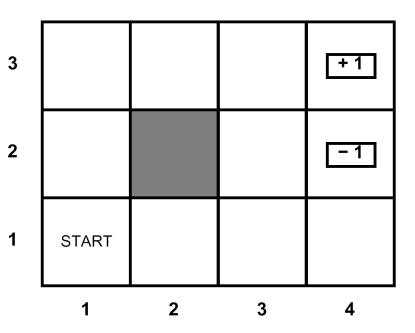
Basic idea:

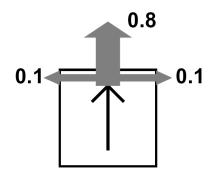
- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards



Grid World

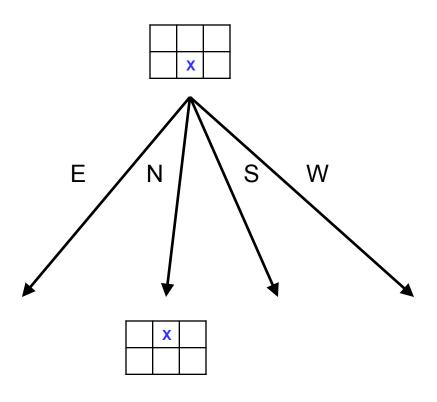
- The agent lives in a grid
- Walls block the agent's path
- The agent's actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- Small "living" reward each step
- Big rewards come at the end
- Goal: maximize sum of rewards*



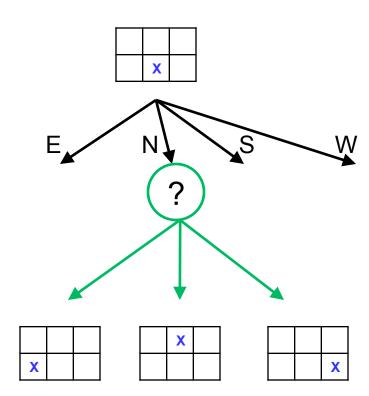


Grid Futures

Deterministic Grid World

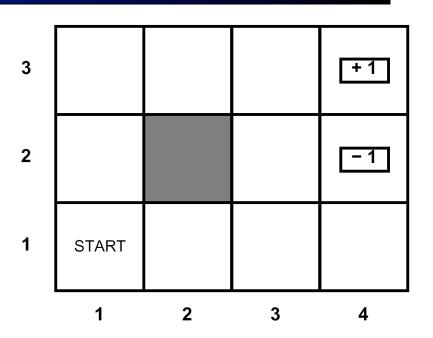


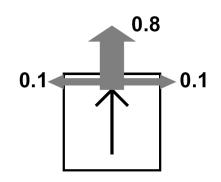
Stochastic Grid World



Markov Decision Processes

- An MDP is defined by:
 - A set of states s ∈ S
 - A set of actions a ∈ A
 - A transition function T(s,a,s')
 - Prob that a from s leads to s'
 - i.e., P(s' | s,a)
 - Also called the model
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state (or distribution)
 - Maybe a terminal state
- MDPs are a family of nondeterministic search problems
 - Reinforcement learning: MDPs where we don't know the transition or reward functions





Keepaway

http://www.cs.utexas.edu/~AustinVilla/sim/ keepaway/swf/learn360.swf

- SATR
- S₀, S₀

What is Markov about MDPs?

- Andrey Markov (1856-1922)
- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes,
 "Markov" means:

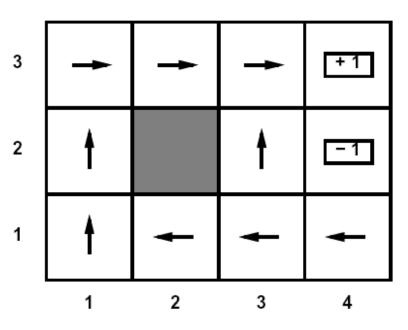
$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$
=

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

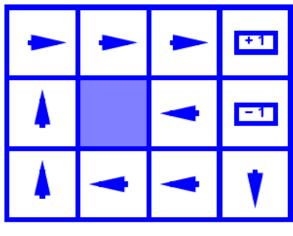
Solving MDPs

- In deterministic single-agent search problems, want an optimal plan, or sequence of actions, from start to a goal
- In an MDP, we want an optimal policy π^* : $S \to A$
 - A policy π gives an action for each state
 - An optimal policy maximizes expected utility if followed
 - Defines a reflex agent

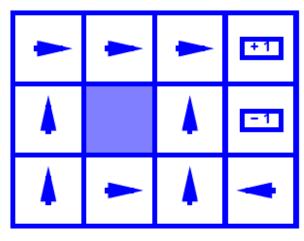
Optimal policy when R(s, a, s') = -0.03 for all non-terminals s



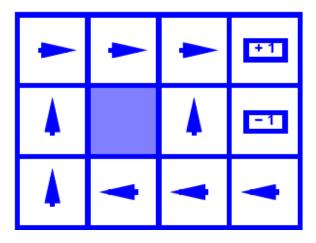
Example Optimal Policies



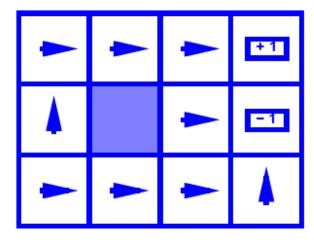
$$R(s) = -0.01$$



R(s) = -0.4



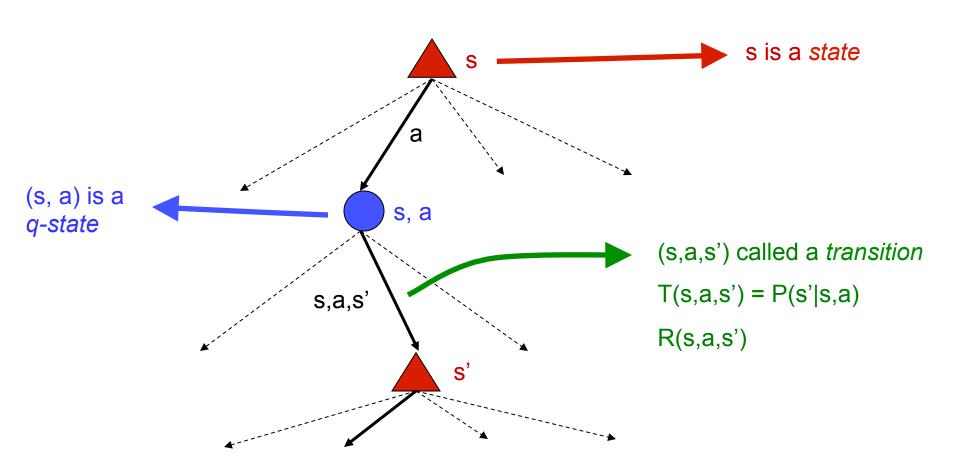
$$R(s) = -0.03$$



$$R(s) = -2.0$$

MDP Search Trees

Each MDP state gives an expectimax-like search tree



Utilities of Sequences

- In order to formalize optimality of a policy, need to understand utilities of sequences of rewards
- Typically consider stationary preferences:

$$[r, r_0, r_1, r_2, \ldots] \succ [r, r'_0, r'_1, r'_2, \ldots]$$
 \Leftrightarrow
 $[r_0, r_1, r_2, \ldots] \succ [r'_0, r'_1, r'_2, \ldots]$

- Theorem: only two ways to define stationary utilities
 - Additive utility:

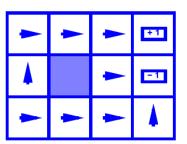
$$U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots$$

Discounted utility:

$$U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$$

Infinite Utilities?!

- Problem: infinite state sequences have infinite rewards
- Solutions:



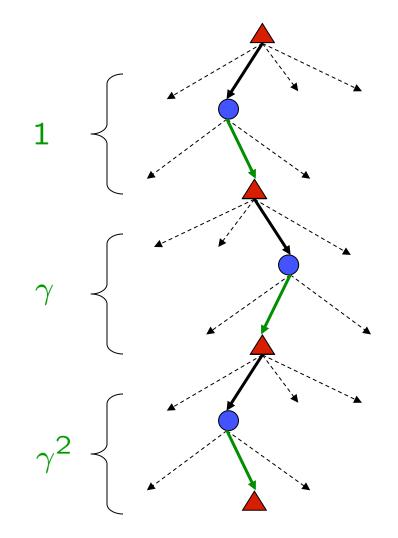
- Terminate episodes after a fixed T steps (e.g. life)
- Gives nonstationary policies (π depends on time left)
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached
- Discounting: for $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

Smaller γ means smaller "horizon" – shorter term focus

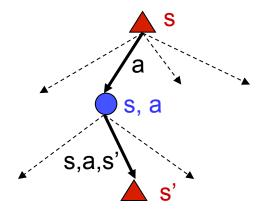
Discounting

- Typically discount rewards by γ < 1 each time step
 - Sooner rewards have higher utility than later rewards
 - Also helps the algorithms converge



Recap: Defining MDPs

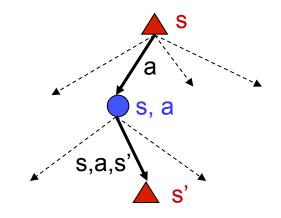
- Markov decision processes:
 - States S
 - Start state s₀
 - Actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)



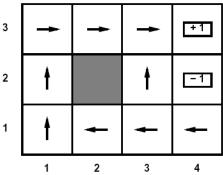
- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility (or return) = sum of discounted rewards

Optimal Utilities

- Fundamental operation: compute the values (optimal expectimax utilities) of states s
- Why? Optimal values define optimal policies!
- Define the value of a state s:
 V*(s) = expected utility starting in s and acting optimally
- Define the value of a q-state (s,a):
 Q*(s,a) = expected utility starting in s, taking action a and thereafter acting optimally
- Define the optimal policy: $\pi^*(s)$ = optimal action from state s



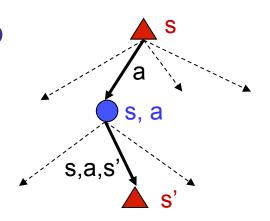
3	0.812	0.868	0.912	+1
2	0.762		0.660	-1
1	0.705	0.655	0.611	0.388
	1	2	3	4



The Bellman Equations

Definition of "optimal utility" leads to a simple one-step lookahead relationship amongst optimal utility values:

Optimal rewards = maximize over first action and then follow optimal policy



Formally:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

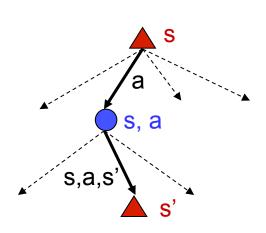
Solving MDPs

- We want to find the optimal policy π^*
- Proposal 1: modified expectimax search, starting from each state s:

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^{*}(s') \right]$$

$$V^*(s) = \max_a Q^*(s, a)$$



Why Not Search Trees?

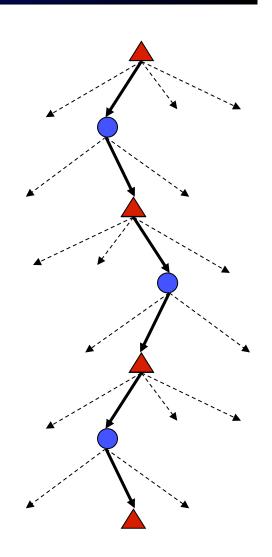
Why not solve with expectimax?

Problems:

- This tree is usually infinite (why?)
- Same states appear over and over (why?)
- We would search once per state (why?)

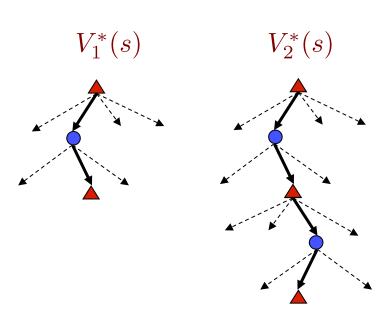
Idea: Value iteration

- Compute optimal values for all states all at once using successive approximations
- Will be a bottom-up dynamic program similar in cost to memoization
- Do all planning offline, no replanning needed!



Value Estimates

- Calculate estimates V_k*(s)
 - Not the optimal value of s!
 - The optimal value considering only next k time steps (k rewards)
 - As k → ∞, it approaches the optimal value
- Almost solution: recursion (i.e. expectimax)
- Correct solution: dynamic programming



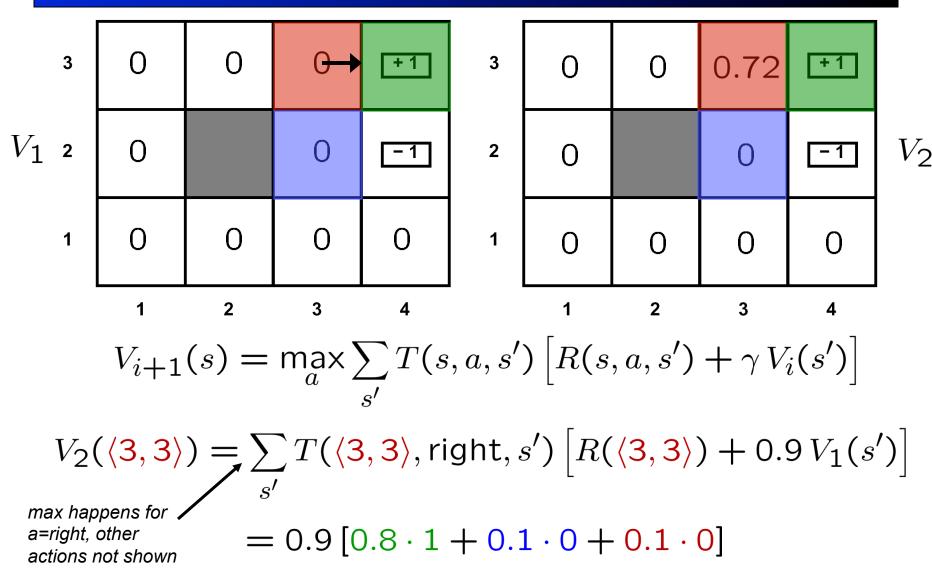
Value Iteration

- Idea:
 - Start with $V_0^*(s) = 0$, which we know is right (why?)
 - Given V_i*, calculate the values for all states for depth i+1:

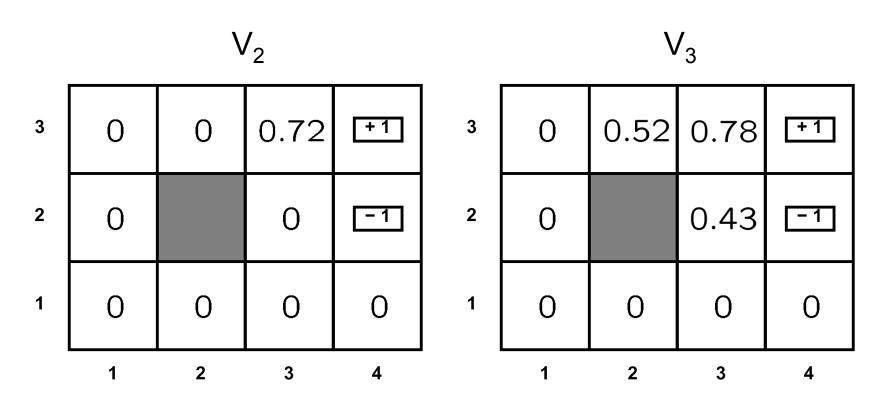
$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

- This is called a value update or Bellman update
- Repeat until convergence
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Example: Bellman Updates



Example: Value Iteration



 Information propagates outward from terminal states and eventually all states have correct value estimates

Convergence*

- Define the max-norm: $||U|| = \max_s |U(s)|$
- Theorem: For any two approximations U and V

$$||U^{t+1} - V^{t+1}|| \le \gamma ||U^t - V^t||$$

- I.e. any distinct approximations must get closer to each other, so, in particular, any approximation must get closer to the true U and value iteration converges to a unique, stable, optimal solution
- Theorem: $||U^{t+1}-U^t||<\epsilon$, $\Rightarrow ||U^{t+1}-U||<2\epsilon\gamma/(1-\gamma)$
 - I.e. once the change in our approximation is small, it must also be close to correct

Practice: Computing Actions

- Which action should we chose from state s:
 - Given optimal values V?

$$\arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

Given optimal q-values Q?

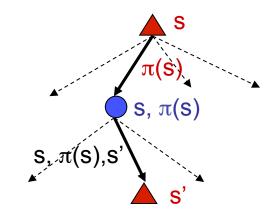
$$\underset{a}{\operatorname{arg\,max}} Q^*(s,a)$$

Lesson: actions are easier to select from Q's!

Utilities for Fixed Policies

- Another basic operation: compute the utility of a state s under a fix (general non-optimal) policy
- Define the utility of a state s, under a fixed policy π:

 $V^{\pi}(s)$ = expected total discounted rewards (return) starting in s and following π



Recursive relation (one-step lookahead / Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Value Iteration

- Idea:
 - Start with $V_0^*(s) = 0$, which we know is right (why?)
 - Given V_i*, calculate the values for all states for depth i+1:

$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

- This is called a value update or Bellman update
- Repeat until convergence
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Policy Iteration

- Problem with value iteration:
 - Considering all actions each iteration is slow: takes |A| times longer than policy evaluation
 - But policy doesn't change each iteration, time wasted
- Alternative to value iteration:
 - Step 1: Policy evaluation: calculate utilities for a fixed policy (not optimal utilities!) until convergence (fast)
 - Step 2: Policy improvement: update policy using one-step lookahead with resulting converged (but not optimal!) utilities (slow but infrequent)
 - Repeat steps until policy converges
- This is policy iteration
 - It's still optimal!
 - Can converge faster under some conditions

Policy Iteration

- Policy evaluation: with fixed current policy π , find values with simplified Bellman updates:
 - Iterate until values converge

$$V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V_i^{\pi_k}(s') \right]$$

 Policy improvement: with fixed utilities, find the best action according to one-step look-ahead

$$\pi_{k+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_k}(s') \right]$$

Comparison

- In value iteration:
 - Every pass (or "backup") updates both utilities (explicitly, based on current utilities) and policy (possibly implicitly, based on current policy)
- In policy iteration:
 - Several passes to update utilities with frozen policy
 - Occasional passes to update policies
- Hybrid approaches (asynchronous policy iteration):
 - Any sequences of partial updates to either policy entries or utilities will converge if every state is visited infinitely often

Reinforcement Learning

- Reinforcement learning:
 - Still assume an MDP:
 - A set of states s ∈ S
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
 - Still looking for a policy $\pi(s)$
 - New twist: don't know T or R
 - i.e. don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Passive Learning

Simplified task

- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- You are given a policy π(s)
- Goal: learn the state values
- ... what policy evaluation did

In this case:

- Learner "along for the ride"
- No choice about what actions to take
- Just execute the policy and learn from experience
- We'll get to the active case soon
- This is NOT offline planning! You actually take actions in the world and see what happens...

Example: Direct Evaluation

Episodes:

$$(1,1)$$
 up -1

$$(1,2)$$
 up -1

$$(1,2)$$
 up -1

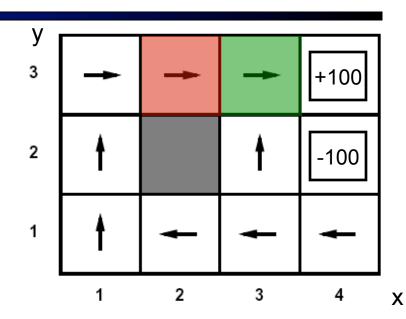
$$(3,2)$$
 up -1

$$(3,2)$$
 up -1

(done)

$$(4,3)$$
 exit +100

(done)



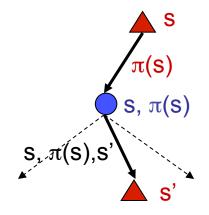
$$\gamma = 1, R = -1$$

$$V(2,3) \sim (96 + -103) / 2 = -3.5$$

$$V(3,3) \sim (99 + 97 + -102) / 3 = 31.3$$

Recap: Model-Based Policy Evaluation

- Simplified Bellman updates to calculate V for a fixed policy:
 - New V is expected one-step-lookahead using current V
 - Unfortunately, need T and R



$$V_0^{\pi}(s) = 0$$

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

Model-Based Learning

- Idea:
 - Learn the model empirically through experience
 - Solve for values as if the learned model were correct
- Simple empirical model learning
 - Count outcomes for each s,a
 - Normalize to give estimate of T(s,a,s')
 - Discover R(s,a,s') when we experience (s,a,s')
- Solving the MDP with the learned model
 - Iterative policy evaluation, for example

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

Example: Model-Based Learning

Episodes:

(1,1) up -1

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(1,3) right -1

(2,3) right -1

(2,3) right -1

(3,3) right -1

(3,3) right -1

(3,2) up -1

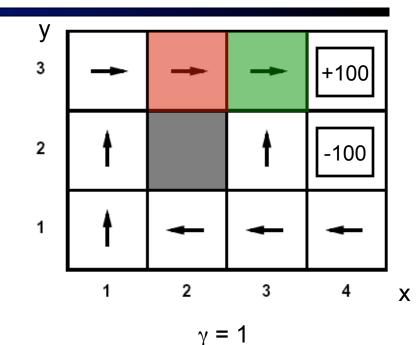
(3,2) up -1

(4,2) exit -100

(3,3) right -1

- (done)
- (4,3) exit +100

(done)



T(<3,3>, right, <4,3>) = 1/3

T(<2,3>, right, <3,3>) = 2/2

Model-Free Learning

Want to compute an expectation weighted by P(x):

$$E[f(x)] = \sum_{x} P(x)f(x)$$

Model-based: estimate P(x) from samples, compute expectation

$$x_i \sim P(x)$$

$$\hat{P}(x) = \text{count}(x)/k$$

$$E[f(x)] \approx \sum_x \hat{P}(x)f(x)$$

Model-free: estimate expectation directly from samples

$$x_i \sim P(x)$$

$$E[f(x)] \approx \frac{1}{k} \sum_i f(x_i)$$

Why does this work? Because samples appear with the right frequencies!

Sample-Based Policy Evaluation?

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

 Who needs T and R? Approximate the expectation with samples (drawn from T!)

$$sample_1 = R(s, \pi(s), s'_1) + \gamma V_i^{\pi}(s'_1)$$

 $sample_2 = R(s, \pi(s), s'_2) + \gamma V_i^{\pi}(s'_2)$
...

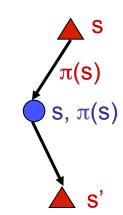
$$sample_k = R(s, \pi(s), s'_k) + \gamma V_i^{\pi}(s'_k)$$

$$V_{i+1}^{\pi}(s) \leftarrow \frac{1}{k} \sum_{i} sample_{i}$$

Almost! But we only actually make progress when we move to i+1.

Temporal-Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience (s,a,s',r)
 - Likely s' will contribute updates more often



- Temporal difference learning
 - Policy still fixed!
 - Move values toward value of whatever successor occurs: running average!

Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s):
$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$$

Same update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$

Exponential Moving Average

- Exponential moving average
 - Makes recent samples more important

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

- Forgets about the past (distant past values were wrong anyway)
- Easy to compute from the running average

$$\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$$

Decreasing learning rate can give converging averages

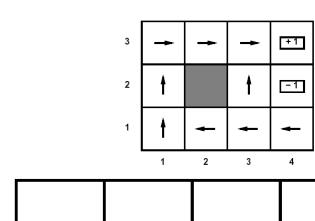
Example: TD Policy Evaluation

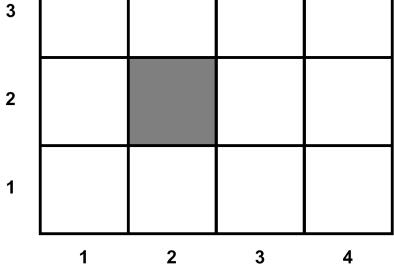
$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

$$(4,3)$$
 exit +100

(done)

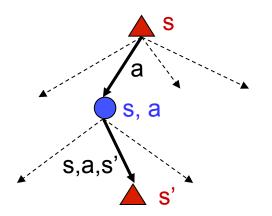
Take γ = 1, α = 0.5





Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation
- However, if we want to turn values into a (new) policy, we're sunk:



$$\pi(s) = \arg\max_{a} Q^*(s, a)$$

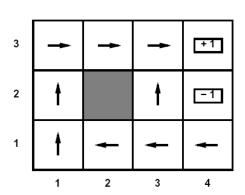
$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^{*}(s') \right]$$

- Idea: learn Q-values directly
- Makes action selection model-free too!

Active Learning

Full reinforcement learning

- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- You can choose any actions you like
- Goal: learn the optimal policy
- ... what value iteration did!



In this case:

- Learner makes choices!
- Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! You actually take actions in the world and find out what happens...

The Story So Far: MDPs and RL

Things we know how to do:

- If we know the MDP
 - Compute V*, Q*, π* exactly
 - Evaluate a fixed policy π
- If we don't know the MDP
 - We can estimate the MDP then solve
 - We can estimate V for a fixed policy π
 - We can estimate Q*(s,a) for the optimal policy while executing an exploration policy

Techniques:

- Model-based DPs
 - Value and policy Iteration
 - Policy evaluation
- Model-based RL
- Model-free RL:
 - Value learning
 - Q-learning

Q-Learning

- Q-Learning: sample-based Q-value iteration
- Learn Q*(s,a) values
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q^{*}(s', a') \right]$$

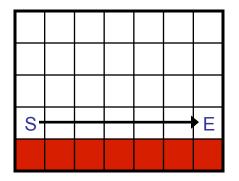
$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

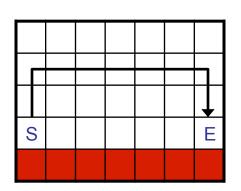
• Incorporate the new estimate into a running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha)[sample]$$

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
 - ... but not decrease it too quickly!
 - Basically doesn't matter how you select actions (!)
- Neat property: off-policy learning
 - learn optimal policy without following it (some caveats)





Exploration / Exploitation

- Several schemes for forcing exploration
 - Simplest random actions (ε greedy)
 - Every time step, flip a coin
 - With probability ε, act randomly
 - With probability 1-ε, act according to current policy
 - Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

Exploration Functions

When to explore

- Random actions: explore a fixed amount
- Better idea: explore areas whose badness is not (yet) established

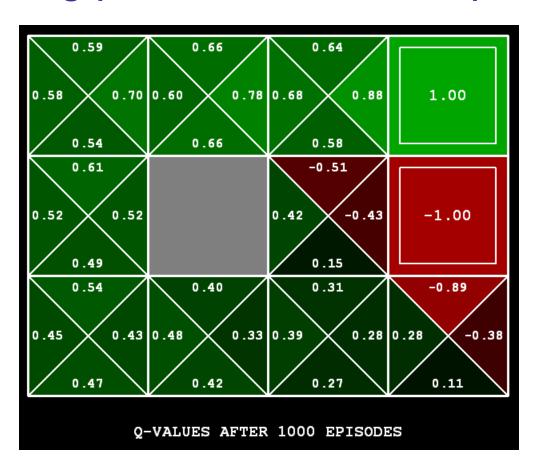
Exploration function

■ Takes a value estimate and a count, and returns an optimistic utility, e.g. f(u,n) = u + k/n (exact form not important)

$$Q_{i+1}(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} Q_i(s', a')$$
$$Q_{i+1}(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} f(Q_i(s', a'), N(s', a'))$$

Q-Learning

• Q-learning produces tables of q-values:

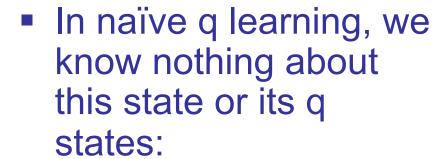


Q-Learning

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar states
 - This is a fundamental idea in machine learning, and we'll see it over and over again

Example: Pacman

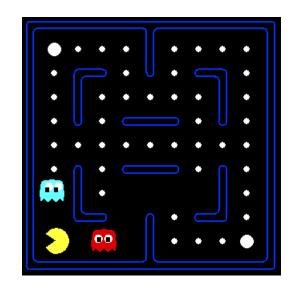
Let's say we discover through experience that this state is bad:



Or even this one!

Feature-Based Representations

- Solution: describe a state using a vector of features
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)



Linear Feature Functions

Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but be very different in value!

Function Approximation

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Q-learning with linear q-functions:

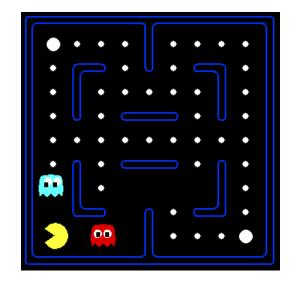
$$Q(s, a) \leftarrow Q(s, a) + \alpha [error]$$

 $w_i \leftarrow w_i + \alpha [error] f_i(s, a)$

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g. if something unexpectedly bad happens, disprefer all states with that state's features
- Formal justification: online least squares

Example: Q-Pacman

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$
 $f_{DOT}(s, \text{NORTH}) = 0.5$
 $f_{GST}(s, \text{NORTH}) = 1.0$
 $Q(s,a) = +1$
 $R(s,a,s') = -500$
 $error = -501$
 $w_{DOT} \leftarrow 4.0 + \alpha [-501] \ 0.5$
 $w_{GST} \leftarrow -1.0 + \alpha [-501] \ 1.0$
 $Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$



Policy Search

http://heli.stanford.edu/

Policy Search

- Problem: often the feature-based policies that work well aren't the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - We'll see this distinction between modeling and prediction again later in the course
- Solution: learn the policy that maximizes rewards rather than the value that predicts rewards
- This is the idea behind policy search, such as what controlled the upside-down helicopter

Policy Search

Simplest policy search:

- Start with an initial linear value function or q-function
- Nudge each feature weight up and down and see if your policy is better than before

Problems:

- How do we tell the policy got better?
- Need to run many sample episodes!
- If there are a lot of features, this can be impractical

Policy Search*

- Advanced policy search:
 - Write a stochastic (soft) policy:

$$\pi_w(s) \propto e^{\sum_i w_i f_i(s,a)}$$

- Turns out you can efficiently approximate the derivative of the returns with respect to the parameters w (details in the book, but you don't have to know them)
- Take uphill steps, recalculate derivatives, etc.