Reinforcement

5 uf‘? . Learning

-~

Slides based on those used in Berkeley's Al class taught by Dan Klein

Reinforcement Learning

= Basic idea:
» Receive feedback in the form of rewards
= Agent’s utility is defined by the reward function
= Must (learn to) act so as to maximize expected rewards

__,[Agent

reward actlon
r
|! (lr

state

Environment

Grid World

The agent lives in a grid

Walls block the agent’s path

The agent’s actions do not always
go as planned:

= 80% of the time, the action North
takes the agent North
(if there is no wall there)

= 10% of the time, North takes the
agent West; 10% East

= |f there is a wall in the direction the
agent would have been taken, the
agent stays put

Small “living” reward each step
Big rewards come at the end
Goal: maximize sum of rewards”™

2

+ 1

START

Grid Futures

Deterministic Grid World Stochastic Grid World
X X
E N S
E N S W

Markov Decision Processes

= An MDP is defined by:

= Asetofstatess& S

= Asetofactionsac A

A transition function T(s,a,s’)
= Prob that a from s leads to s’
" j.e., P(s’|s,a)
= Also called the model

A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’)

A start state (or distribution)

Maybe a terminal state

= MDPs are a family of non-
deterministic search problems

» Reinforcement learning: MDPs
where we don’t know the
transition or reward functions

+ 1

1 START

0.8

0.1 0.1

Keepaway

= http://www.cs.utexas.edu/~AustinVilla/sim/
keepaway/swif/learn360.swf

» SATR
" Sy S

What is Markov about MDPs?

= Andrey Markov (1856-1922)

= “Markov” generally means that given
the present state, the future and the
past are independent

= For Markov decision processes,
“Markov” means:

P(St—i—l — Sl\St = 54, Ay = a, Si—1 = 541, A—1,...S0 = So)

P(Siy1 =5'|St = s¢, A = ay)

Solving MDPs

* |n deterministic single-agent search problems, want an
optimal plan, or sequence of actions, from start to a goal

= |[nan MDP, we want an optimal policy n*: S — A

» A policy rt gives an action for each state
» An optimal policy maximizes expected utility if followed
» Defines a reflex agent

Optimal policy when 2 1 f -
R(s, a, s’) =-0.03 for all
non-terminals s

1 1 — e e

Example Optimal Policies

-—
= S
o 1
1

|
I —_
s 0
~ R

MDP Search Trees

= Each MDP state gives an expectimax-like search tree

~
~

(s,a,s’) called a transition
T(s,a,s’) = P(s'[s,a)
R(s,a,s’)

10

Utilities of Sequences

* |n order to formalize optimality of a policy, need to
understand utilities of sequences of rewards

= Typically consider stationary preferences:

[,r7 ro, 71,72, .-] ~ [T7 TE)) 7/{]_7 TJQ) .-]
<~

[T07 1,72, ..] ~ [7“6774{]_77“/27 .]

= Theorem: only two ways to define stationary utilities
= Additive utility:
U([r07r177°2,-..]) =170 —I—Tl —|—r2 + ...

= Discounted utility:
U([TQ, 1,72, ..]) =ro+ yr1 + 727~2 e

11

Infinite Utilities™!

= Problem: infinite state sequences have infinite rewards

.
Solutions: il Bl
* Finite horizon: | ==
= Terminate episodes after a fixed T steps (e.g. life) | ™| ™| ™ i

= Gives nonstationary policies (t depends on time left)

» Absorbing state: guarantee that for every policy, a terminal state

will eventually be reached
= Discounting: forO <y <1

U([rg,...rcc]) = i vt'rt < Rmax/(1 —)
t=0

= Smaller y means smaller “horizon” — shorter term focus

12

Discounting

= Typically discount
rewards by v < 1 i
each time step T\

= Sooner rewards

have higher utility
than later rewards TN

= Also helps the -
algorithms -
converge 2

Recap: Defining MDPs

= Markov decision processes:
= States S
= Start state s,
= Actions A
* Transitions P(s’[s,a) (or T(s,a,s’))
» Rewards R(s,a,s’) (and discount vy)

= MDP quantities so far:
» Policy = Choice of action for each state
= Utility (or return) = sum of discounted rewards

14

Optimal Utilities

Fundamental operation: compute
the values (optimal expectimax
utilities) of states s

Why? Optimal values define
optimal policies!

Define the value of a state s: ~"s,a,8

V'(s) = expected utility starting in s
and acting optimally

Define the value of a g-state (s,a):

Q’(s,a) = expected utility starting in s,
taking action a and thereafter

acting optimally 3 | o812 | oses | 0912 = |

Define the optimal policy: 2 | o762 oeeo [=1| 2 | 4

7 (s) = optimal action from state s

1 0.705 0.655 0.611 0.388 1 t -

The Bellman Equations

= Definition of “optimal utility” leads to a
simple one-step lookahead relationship

amongst optimal utility values:

Optimal rewards = maximize over first ,
action and then follow optimal policy o

= Formally:
V*(s) = max Q*(s,a)

Q*(s,a) => T(s,a, s [R(s, a,s’) + 'yV*(s’)]

V*i(s) = mC?XZT(S’ a,s) {R(s, a,s’) + ’}/V*(S/)}

S

16

Solving MDPs

= We want to find the optimal policy =*

= Proposal 1: modified expectimax search, starting from
each state s:

m(s) = argmaxQ*(s,a)
a
Q7(s,a) = ZT(5> a,s') [R(S, a,s') + ’yV*(s’)} o~

V*i(s) = max Q*(s,a) S

17

Why Not Search Trees?

= Why not solve with expectimax?

= Problems:
= This tree is usually infinite (why?) p
= Same states appear over and over (why?) *
= We would search once per state (why?)

= |dea: Value iteration

= Compute optimal values for all states all at
once using successive approximations

= Will be a bottom-up dynamic program
similar in cost to memoization o

= Do all planning offline, no replanning
needed!

18

Value Estimates

= Calculate estimates V, (s)
= Not the optimal value of s!

= The optimal value
considering only next k o
time steps (k rewards)

» As k — o, it approaches
the optimal value

s Almost solu_tion: recursion
(i.e. expectimax)

= Correct solution: dynamic
programming

19

Value lteration

» |dea:
= Start with V, (s) = 0, which we know is right (why?)
= Given V/, calculate the values for all states for depth i+1:

Vit1(s) «— mC?XZT(S, a,s) [R(S,CL, s + ’y‘/}(s/)}

S

» This is called a value update or Bellman update
= Repeat until convergence

= Theorem: will converge to unique optimal values
» Basic idea: approximations get refined towards optimal values
» Policy may converge long before values do

20

Example: y=0.9, living
reward=0, noise=0.2

Example: Bellman Updates

s 0O | OF GHED| 2| 0| 0 |[0.72| E

Vig1(s) = mC?XZT(S, a,s') {R(s, a,s’) + 'y\/f,;(s/)}

S

12((3,3)) = Y T((3,3),right, s") |R((3,3)) + 0.9 V1 ()]

S
max happens for

a=right, other —0.9[0.8-140.1-040.1-0]

actions not shown
21

Example: Value lteration

+ 1

+ 1

* |Information propagates outward from terminal
states and eventually all states have correct

value estimates

22

Convergence”®

= Define the max-norm: ||U|| = maxs |[U(s)|

* Theorem: For any two approximations U and V
U — v <y Ut - V|

= |.e. any distinct approximations must get closer to each other,
S0, in particular, any approximation must get closer to the true U
and value iteration converges to a unique, stable, optimal

solution

= Theorem:
UL — Ul <€, = UL - U|| < 2ev/(1 —7)

= |.e. once the change in our approximation is small, it must also
be close to correct

23

Practice: Computing Actions

= \Which action should we chose from state s:
= Given optimal values V7

arg max ZT(S, a,s)[R(s,a,s") +~V*(s)]

S

= Given optimal g-values Q?

arg maxQ*(s,a)
a

= | esson: actions are easier to select from Q’s!

24

Utilities for Fixed Policies

= Another basic operation: compute
the utility of a state s under a fix
(general non-optimal) policy

= Define the utility of a state s, under a
fixed policy m:
V7(s) = expected total discounted

rewards (return) starting in s and
following &t

= Recursive relation (one-step look-
ahead / Bellman equation):

VT(s) =) T(s,m(s),s)R(s,7(s),8) + V()]

26

Value lteration

» |dea:
= Start with V, (s) = 0, which we know is right (why?)
= Given V/, calculate the values for all states for depth i+1:

Vit1(s) «— mC?XZT(S, a,s) [R(S,CL, s + ’y‘/}(s/)}

S

» This is called a value update or Bellman update
= Repeat until convergence

= Theorem: will converge to unique optimal values
» Basic idea: approximations get refined towards optimal values
» Policy may converge long before values do

27

Policy lteration

= Problem with value iteration:

» Considering all actions each iteration is slow: takes |A| times longer
than policy evaluation

= But policy doesn’t change each iteration, time wasted

= Alternative to value iteration:

= Step 1: Policy evaluation: calculate utilities for a fixed policy (not optimal
utilities!) until convergence (fast)

= Step 2: Policy improvement: update policy using one-step lookahead
with resulting converged (but not optimal!) utilities (slow but infrequent)

» Repeat steps until policy converges

= This is policy iteration
= |t's still optimal!
= Can converge faster under some conditions

Policy lteration

= Policy evaluation: with fixed current policy r, find values
with simplified Bellman updates:
= [terate until values converge

ViE L (s) — D T(s,m(s), ") |R(s,m(s),s") 4+ v V™ ()]

= Policy improvement: with fixed utilities, find the best
action according to one-step look-ahead

Tp+1(s) = arg maXZT(s, a,s) {R(s, a,s) + vvﬂk(s’)}

S/

30

Comparison

= |n value iteration:

= Every pass (or “backup”) updates both utilities (explicitly, based
on current utilities) and policy (possibly implicitly, based on
current policy)

= |n policy iteration:
» Several passes to update utilities with frozen policy
= QOccasional passes to update policies

= Hybrid approaches (asynchronous policy iteration):

» Any sequences of partial updates to either policy entries or
utilities will converge if every state is visited infinitely often

31

Reinforcement Learning

= Reinforcement learning:

= Still assume an MDP:
» Asetofstatess & S
= A set of actions (per state) A
= A model T(s,a,s’)
= A reward function R(s,a,s’)

= Still looking for a policy nt(s)

= New twist: don’'t know T or R

= i.e. don’t know which states are good or what the actions do
= Must actually try actions and states out to learn

36

Passive Learning

. . 3 — —

= Simplified task
= You don't know the transitions T(s,a,s’) dl =
= You don’t know the rewards R(s,a,s’) T I N -

You are given a policy n(s) PR
Goal: learn the state values
... what policy evaluation did

* |n this case:
= |earner “along for the ride”
= No choice about what actions to take
= Just execute the policy and learn from experience
= We'll get to the active case soon

= This is NOT offline planning! You actually take actions in the
world and see what happens...

37

Example: Direct Evaluation

= Episodes:

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1
(2,3) right -1
(3,3) right -1
(3,2) up -1

(3,3) right -1
(4,3) exit +100

(done)

(1,1) up -1
(1,2) up -1
(1,3) right -1
(2,3) right -1
(3,3) right -1
(3,2) up -1
(4,2) exit -100
(done)

y
3| = | = | = [[+100
2 |} b |[|-100
30 [N N [S
1 2 3 4 X
y=1,R=-1

V(2,3) ~ (96 + -103) /2 = -3.5

V(3,3) ~ (99 + 97 +-102) / 3= 31.3

38

Recap: Model-Based Policy Evaluation

= Simplified Bellman updates to
calculate V for a fixed policy:

* New V is expected one-step-look-
ahead using current V

» Unfortunately, need T and R

Voi(s) =0

M 1(s) — > T (s,m(s), s"Y[R(s,m(s),s") + Vi (s)]

39

Model-Based Learning

= |dea:
= |earn the model empirically through experience
= Solve for values as if the learned model were correct

= Simple empirical model learning
= Count outcomes for each s,a
* Normalize to give estimate of T(s,a,s’)
= Discover R(s,a,s’) when we experience (s,a,s’)

= Solving the MDP with the learned model
» |terative policy evaluation, for example .

;_T'_l(s) — ZT(S, 7(s),s)[R(s,m(s),s) + ’y\/f(s/)]

40

Example: Model-Based Learning

= Episodes:

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1
(2,3) right -1
(3,3) right -1
(3,2) up -1

(3,3) right -1
(4,3) exit +100

(done)

(1,1) up -1
(1,2) up -1
(1,3) right -1
(2,3) right -1
(3,3) right -1
(3,2) up -1
(4,2) exit -100
(done)

y
3| = | == | == |[+100
2 | b 1|-100
1 t — — ——
1 2 3 4
v =1

T(<3,3>, right, <4,3>)=1/3

T(<2,3>, right, <3,3>)=2/2

41

Model-Free Learning

= \Want to compute an expectation weighted by P(x):
Elf(z)] =22, P(2)f(z)
= Model-based: estimate P(x) from samples, compute expectation

. Elf(x)| ~ P(z)f(x
b oy PI@IS T P@I@

» Model-free: estimate expectation directly from samples

x; ~ P(x) Blf(x)] ~ 5 22, f(@i)

= Why does this work? Because samples appear with the right
frequencies!

42

Sample-Based Policy Evaluation?

Vi1(s) — Y T(s,m(s),) [R(s,7(s),s) +~Vi(s)]

= Who needs T and R? Approximate the
expectation with samples (drawn from T!)

sample; = R(s,m(s), 8/1) -+ ’}/V-W(Sll)

samples = R(s,m(s),s5) + vV (s5) g
sampley, = R(s,7(s), s) + 7V (5})

Almost! But we only
actually make progress
when we move to i+1.

1
Vil 1(s) « - > sample;
1

43

Temporal-Difference Learning

= Big idea: learn from every experience!

» Update V(s) each time we experience (s,a,s’,r) S
= Likely s’ will contribute updates more often n(S)
S, 1(S)
= Temporal difference learning
= Policy still fixed! Ao
= Move values toward value of whatever S
sSuccessor occurs: running average!
/ /
Sample of V(s): sample = R(s,m(s),s") +~yV"(s")
Update to V(s): VT(s) «— (1 —a)V"™(s) + (a)sample
Same update: VT(s) «— V" (s) + a(sample — V" (s))

44

Exponential Moving Average

= Exponential moving average
= Makes recent samples more important

Tp+(1—a) Zp1+(1—a) zp_o+...
1+ (1-a)+(1—-a)?+...

jn —

» Forgets about the past (distant past values were wrong anyway)
» Easy to compute from the running average

Ty = (1 —Oé) *Tp—1 1+ Q- Ty

= Decreasing learning rate can give converging averages

45

Example: TD Policy Evaluation

VT(s) — (1 = a)V™(s) +a |R(s,m(s),s") + 4V (s

(1,1) up -1 (1,1) up -1 s = | = | —
(1,2) up -1 (1,2) up -1 [t e
(1,2) up -1 (1,3) right -1 ' I N [R
(1,3) right -1 (2,3) right -1

(2,3) right -1 (3,3) right -1 3

(3,3) right -1 (3,2) up -1

(3,2) up -1 (4,2) exit -100 0

(3,3) right -1 (done)

(4,3) exit +100 ;

(done)

Takey=1,a=0.5

Problems with TD Value Learning

TD value leaning is a model-free way
to do policy evaluation

However, if we want to turn values into +~
a (new) policy, we’re sunk:

w(s) = argmaxQ*(s,a)

Q*(s,a) = ZT(S, a,s) [R(s, a,s’) + ’yV*(s/)]

|dea: learn Q-values directly
Makes action selection model-free too!

47

Active Learning

: . S Bl B

= Full reinforcement learning
= You don’t know the transitions T(s,a,s’) | =
= You don’t know the rewards R(s,a,s’) T I N -

You can choose any actions you like PR
Goal: learn the optimal policy
... what value iteration did!

* |n this case:
= |earner makes choices!
» Fundamental tradeoff: exploration vs. exploitation

» This is NOT offline planning! You actually take actions in the
world and find out what happens...

48

The Story So Far: MDPs and RL

Things we know how to do: Techniques:
= |f we know the MDP = Model-based DPs
= Compute V*, Q*, n* exactly o

Value ahd policy
lteratio

Policy evaluatio

= Evaluate a fixed policy «

= |[f we don’t know the MDP
= We can estimate the MDP then solve * Model-based RL

= We can estimate V for a fixed policy ® = |\Jodel-free RL:
= We can estimate Q*(s,a) for the = Value learning

optimal policy while executing an - Qulearnin
exploration policy

49

Q-Learning

= Q-Learning: sample-based Q-value iteration

= Learn Q*(s,a) values
» Receive a sample (s,a,s’,r)
= Consider your old estimate: Q(s,a)
» Consider your new sample estimate:

Q*(s,0) = Y. T(s,0.8) |R(s,a,5) + 7 max Q*(s',)]

sample = R(s,a,s’) + ~ max Q(s',a)
a

» |ncorporate the new estimate into a running average:

CQ(s,a) — (1 = a)Q(s,a) + (a) [sample] >

52

Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy
» |f you explore enough
* |f you make the learning rate small enough
= ... but not decrease it too quickly!
= Basically doesn’t matter how you select actions (!)

= Neat property: off-policy learning

» |learn optimal policy without following it (some caveats)

S iE S E

53

Exploration / Exploitation

= Several schemes for forcing exploration
= Simplest:random actions (e greedy)>

= Every time step, flip a coin
= With probability €, act randomly
= With probability 1-¢, act according to current policy

= Problems with random actions?

= You do explore the space, but keep thrashing
around once learning is done

= One solution: lower ¢ over time
= Another solution: exploration functions

54

Exploration Functions

= When to explore
» Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not (yet)
established

= Exploration function

» Takes a value estimate and a count, and returns an optimistic
utility, e.g. f(u,n) = u + k/n (exact form not important)

Qi+1(87 CL) o R(Sa a, S/) + Y maax Qi(s/a a’/)

Qit1(5,a) —a R(s,0,5) +7max f(Qi(s,a"), N(s/,a"))

95

Q-Learning

Q-Learning

* |n realistic situations, we cannot possibly learn
about every single state!
* Too many states to visit them all in training
= Too many states to hold the g-tables in memory

* Instead, we want to generalize:
» |earn about some small number of training states
from experience
» Generalize that experience to new, similar states

* This is a fundamental idea in machine learning, and
we’ll see it over and over again

o7

Example: Pacman

= | et's say we discover
through experience
that this state is bad:

* In naive q learning, we
know nothing about
this state or its g
states:

= Or even this one!

58

Feature-Based Representations

= Solution: describe a state using
a vector of features
= Features are functions from states
to real numbers (often 0/1) that

capture important properties of the
state

= Example features:

= Distance to closest ghost
Distance to closest dot
Number of ghosts
1/ (dist to dot)?
|s Pacman in a tunnel? (0/1)

= Can also describe a g-state (s, a)
with features (e.g. action moves
closer to food)

Linear Feature Functions

» Using a feature representation, we can write a

g function (or value function) for any state
using a few weights:

V(s) =wi1f1(s) +wafa(s) + ...+ wnfn(s)
Q(Sa CI,) — wlfl(sa CL)—I—QUQfQ(S, a)+ . °+wnfn(57 a’)

= Advantage: our experience is summed up in a
few powerful numbers

» Disadvantage: states may share features but
be very different in value!

60

Function Approximation

Q(Sa CL) — wlfl(sa (l)‘l—UJQfQ(S, a)+ . °+wnfn(57 a)
= Q-learning with linear g-functions:

Q(s,a) «— Q(s,a) + a[error]

w; +— w; + a[error] f;(s,a)

= [ntuitive interpretation:
» Adjust weights of active features

= E.g. if something unexpectedly bad happens, disprefer all states
with that state’s features

= Formal justification: online least squares

61

Example: Q-Pacman

Q(s,a) = 4.0fpor(s,a) — 1.0fgsr(s,a)
fpor(s, NORTH) = 0.5
fasr(s, NORTH) = 1.0

Q(s,a) = +1
R(s,a,s’) = —500

error = —501
wpor — 4.0 + a[-501] 0.5
wagsT — —1.0 + a[-501] 1.0

Q(Sa a) — 3°OfDOT(Sa CL) - 3‘OfGST(87 CL)

Policy Search

®

http://heli.stanford.edu/

69

Policy Search

= Problem: often the feature-based policies that work well
aren’t the ones that approximate V / Q best

= E.g. your value functions from project 2 were probably horrible
estimates of future rewards, but they still produced good
decisions

= We'll see this distinction between modeling and prediction again
later in the course

= Solution: learn the policy that maximizes rewards rather
than the value that predicts rewards

= This is the idea behind policy search, such as what
controlled the upside-down helicopter

70

Policy Search

= Simplest policy search:
= Start with an initial linear value function or g-function

= Nudge each feature weight up and down and see if
your policy is better than before

* Problems:
= How do we tell the policy got better?
* Need to run many sample episodes!
= |f there are a lot of features, this can be impractical

71

Policy Search®

= Advanced policy search:
» Write a stochastic (soft) policy:

Tw(s) o e2ui Wifi(s,a)

= Turns out you can efficiently approximate the
derivative of the returns with respect to the
parameters w (details in the book, but you don’t have
to know them)

= Take uphill steps, recalculate derivatives, etc.

72

